
Hybrid Memory Management for Parallel Execution of Prolog

on Shared Memory Multiprocessors

Copyright© 1990 by Tam Minh Nguyen

This research is sponsored by the Defense Advanced Research Projects Agency (DARPA)

(monitored by the Office of Naval Research under Contract No. N00014-88-K-0579), the

NCR Corporation in Dayton, Ohio, and the National Science Foundation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1990 2. REPORT TYPE

3. DATES COVERED
 00-00-1990 to 00-00-1990

4. TITLE AND SUBTITLE
Hybrid Memory Management for Parallel Execution of Prolog on Shared
Memory Multiprocessors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Shared memory multiprocessors can provide high processing power at relatively low cost. In contrast to
message passing systems, shared memory multiprocessors allow for efficient data sharing, and thus are
more suitable for execution models that exploit medium grain parallelism. This dissertation investigates the
problem of memory management for a globally shared space in a parallel execution environment. An
AND/OR parallel execution model of Prolog is chosen for our work due to its medium grain parallelism
and its intensive memory usage characteristics. With respect to space, we propose a hybrid heap-stack
(called ELPS) which is dynamically allocated for more efficient space sharing and interference-free
parallel execution. With respect to time, we present a two-tier memory architecture (called the
Aquarius-II) with separate synchronization and high-bandwidth memory spaces. A multiprocessor
simulation system has been developed to evaluate the performance of ELPS and the Aquarius-II. ELPS
incurs an average of 2% overhead (11% without hardware support), while satisfying the memory
requirement to keep up with the speedup potential of the parallel execution model. Compared to the single
bus multiprocessor architecture, the Aquarius-II provides higher performance by reducing contention on
the synchronization bus and by providing a higher memory bandwidth with a crossbar. A simple broadcast
for invalidation scheme is sufficient to keep the crossbar caches consistent while maintaining good cache
performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

170

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Hybrid Memory Management
for Parallel Execution of Prolog

on Shared Memory Multiprocessors

Tam Minh Nguyen

PH.D. DISSERTATION CS DIVISION (EECS)

ABSTRACT

Shared memory multiprocessors can provide high processing power at relatively

low cost. In contrast to message passing systems, shared memory multiprocessors allow for

efficient data sharing, and thus are more suitable for execution models that exploit medium

grain parallelism. This dissertation investigates the problem of memory management for a

globally shared space in a parallel execution environment. An AND/OR parallel execution

model of Prolog is chosen for our work due to its medium grain parallelism and its intensive

memory usage characteristics. With respect to space, we propose a hybrid heap-stack (called

ELPS) which is dynamically allocated for more efficient space sharing and interference-free

parallel execution. With respect to time, we present a two-tier memory architecture (called

the Aquarius-H) with separate synchronization and high-bandwidth memory spaces.

A multiprocessor simulation system has been developed to evaluate the perfor­

mance of ELPS and the Aquarius-IT. ELPS incurs an average of 2% overhead (11% without

hardware support), while satisfying the memory requirement to keep up with the speedup

potential of the parallel execution model. Compared to the single bus multiprocessor ar­

chitecture, the Aquarius-IT provides higher performance by reducing contention on the syn­

chronization bus and by providing a higher memory bandwidth with a crossbar. A simple

broadcast for invalidation scheme is sufficient to keep the crossbar caches consistent while

maintaining good cache performance.

Alvin M. Despain

Committee Co-Chair

Vason P. Srini

Committee Co- Chair

11

ACKNOWLEDGEMENT

This dissertation is the culmination of my graduate school "career." Through the

years, I have received a great deal of support from many people who helped make this

monumental task an achievable reality. First of all, I would like to express my deepest

gratitude for my research co-advisors: Professor Alvin Despain, whose continual support

and multi-faceted interest in science have fueled my enthusiasm for research; and Professor

Vason Srini, who is always there for me to discuss the latest computer architectural concept

as well as to complain about various aspects of graduate student life. Secondly, I would

like thank my other two readers: Professor Chittoor Ramamoorthy and Professor Terence

Speed. Their time and effort are greatly appreciated. Thirdly, I would like to thank: Mike

Carlton, for his development of the cache simulation modules; Chien Chen (my officemate)

for his cooperative effort in the development of the NuSim simulator; Bruce Holmer, for

the words of encouragement in the late hours of the night; Peter Van Roy, for the insightful

feedbacks to my work; and Jim Wilson and Edward Wang, for being my living encyclopedias

of Unix, X-windows, Lisp, and L\TE)X. I would also like to thank my other dear friends and

colleagues in the Aquarius group and the C.S. Division at U.C. Berkeley, with whom I have

shared many enlightening discussions. They include: Glenn Adams, Philip Bitar, Gino

Cheng, Ralph Haygood, Kinson Ho, Ken Rimey, Ashok Singhal, Danielle Smith, Jerrie

Tam, Herve Touati, and Benjamin Zorn.

Outside of the C.S. division, I am grateful to a number of close friends that I have

made over the years. They have provided me with the friendship that I needed to continue

my pursuit of a graduate degree. Among them are: Ann Greyson, Merilee Lau, Nhat

Nguyen, Arthur Sato, Roger Sit, and L~ch Tran. Although my friends in the Vietnamese

Student Association at U .C. Berkeley are too many to list, they have individually and

collectively made a positive impact on my outlook for the future.

I am indebted to my late grandmother for the weekly letters of encouragement that

kept me afloat in my first two years at Berkeley; to my parents for their unbounded love

and support, and for the constant reminder of the best measures of success: good health

and happiness; and last but not least, to Que Lam, my "best friend" and companion, for

lifting me high above the hurdles in the final lap.

Contents

List of Tables

List of Figures

1 Introduction
1.1 Motivation: The Memory Management Problem

1.2 The Thesis
1.3 Research Direction . .
1.4 Contributions
1.5 Dissertation Outline .

2 Multiprocessors and Parallel Execution

2.1 Multiple Processor Systems

2.1.1 Message-Based Multicomputers .

2.1.2 Shared Memory Multiprocessors

2.2 Parallel Execution on Multiprocessors

2.3 Prolog and Its Applications
2.3.1 Prolog Terminology

2.4 Parallelism in Prolog ..
2.4.1 AND-Parallelism ..
2.4.2 OR-Parallelism ...
2.4.3 Other Types of Parallelism

2.5 Processes and Tasks
2.6 Chapter Summary

lU

vii

Vlll

1
1
3
3
5
6

7
7
7
8

11
12
13
15
16
18
20
21
22

3 Memory Management: Issues and Past Solutions 23

3.1 Issues in Memory Management 23

3.2 Memory Management Techniques: A Historical Perspective 25

3.2.1 Virtual Memory . 25

3.2.2 Allocation Strategies . 25

3.2.3 Data Organization and Memory Access Policies . 27

3.3 Sequential Execution of Prolog 27

3.3.1 Understanding Prolog Memory Requirements 27

3.3.2 The WAM Stack Model 29

iv

3.4

3.5
3.6

3.7

Parallel Execution of Prolog

3.4.1 Memory Requirements

3.4.2 Scheduling Effects on Memory Behavior

3.4.3 Message-Based Models

3.4.4 Shared Memory Models

3.4.5 Or-Parallel Binding Environments . . .

Static Partitioning of Globally Shared Space ..

Solving the Problems of Static Partitioning

3.6.1 Virtual Memory

3.6.2 Garbage Collection

3.6.3 Copy When Overflow

3.6.4 Dynamic Allocation

Chapter Summary

31
31
33
33
35
37
42
42
42
43
44
44
44

4 ELPS: The Explicitly Linked Paging Stack 46
46
46
47
48
48
50
50
50
51
51
51
52
54

4.1 General Model

4.1.1 Page Partitioning

4.1.2 Link Management

4.2 Possible Implementations
4.2.1 Overflow and Underflow Detection

4.2.2 Overflow and Underflow Handling

4.2.3 Data Access

4.2.4 Address Comparison

4.3 Qualitative Evaluation
4.3.1 Advantages

4.3.2 Challenges

4.3.3 Elimination of Address Comparison

4.4 Chapter Summary

5 NuSim: A Multiprocessor System Simulator 55

5.1 Introduction 55

5.2 Simulator Design Goals 56

5.3 Simulation System Overview . . 57

5.3.1 Program Transformation. 57

5.3.2 Design Considerations 59

5.4 Module Description. 60

5.4.1 Assembler/Loader . 60

5.4.2 Command Interface 61

5.4.3 Graphical Interface . 61

5.4.4 Main Simulation Engine 61

5.4.5 Memory System 64

5.5 Instrumentation. 65

5.6 Multi-level Debugging Facility . 67

5.7 xNuSim: A Graphical Interface for Multiprocessor Simulators 71

5.8 Compatibility and Extendability . 73

5.9

5.10

Implementation of ELPS on the Simulated Multiprocessor

5.9.1 Software Checking

5.9.2 Hardware Support for Checking ..

Chapter Summary

6 Simulator Validation

6.1 Introduction

6.2 Validation Methodology

6.3 Simulator Descriptions .

6.3.1 VPsim 0 o • o o o

6.3.2 Simulator Differences ..

6.4 The Validation of NuSim

6.4.1 Static Code Size

6.4.2 Cycle Count (Simulated Time)

6.4.3 Simulation Cost .

6.4.4 Operation Count .

6.4.5 Memory Accesses .

6.5 Chapter Summary

7 ELPS Simulation Experiments and Results

7.1 Sequential Execution Performance

7.1.1 Split Environment and Choice Point Stacks

7.1.2 Always Trail o •••••••••••••••••••

7.1.3 Put Permanent Variables on Heap .

7.2 Parallel Execution and ELPS Performance .

7.2.1 Execution Time Overhead

7.2.2 Parallelism Gained 0

7.2.3 Effect of Page Size on Performance 0 .. 0

7.2.4 Allocation and Deallocation Strategies .. .

7.3 Discussion .

8 Aquarius-II: A Two-Tier Memory Architecture

8.1 Introduction

802 High Performance Memory Architectures

8.3 The Aquarius-II Architecture ..

8.3.1 Synchronization memory

8.3.2 High-bandwidth Memory

8.3.3 High-Bandwidth Memory Cache Coherency

8.4 Parallel Execution of Prolog

8.401 Synchronization Characteristics ..

8.4.2 Mapping of PPP onto Aquarius-II

805 Chapter Summary 0

v

74

74

75

76

78
78
78

80

80

81

82

83

83

84

87

88

90

91
91
91

95
97

100
100
103

105
109

109

112
112

113

114

114

115

116

118

119

120

121

vi

9 Aquarius-11 Simulation Results

9.1 Simulation Parameters

9.2
9.3
9.4
9.5

9.6

Memory Access Behavior .

Execution Time of Single Bus vs. Two Tier

Parallel Execution Behavior .. .

Crossbar Cache Performance .. .

9.5.1 Restricted Caching

9.5.2 Broadcast for Invalidation ..

Discussion .

10 Conclusion
10.1 Summary and Contributions .

10.2 Future Work
10.3 Concluding Remarks

A NuSim User's Manual

Bibliography

122
122
123
125
126
129
129
130
133

134
134
135
138

139

143

List of Tables

6.1
6.2
6.3
6.4

Benchmark Code Sizes and Descriptions

Cycle Count and Simulation Time
Logical Inference Count
Memory References

vii

83
85
87
89

7.1 Split vs. Combined Environment/Choicepoint Stack 94

7.2 Memory Statistics for Split vs. Combined Stack 94

7.3 Always Trail vs. Selective Trail (split stacks) 96

7.4 Memory Statistics for Always vs. Selective Trail (split stacks) 96

7.5 Permanent Variables on Heap vs. on Stack (split stacks) 98

7.6 Memory Statistics for Perm. Vars. on Heap vs. on Stack (split stacks) . 98

7.7 Benchmark Code Sizes and Descriptions 100

7.8 Overhead of ELPS Checking and Overflow Handling 101

7.9 Behavior of ELPS Checking and Overftow Handling 102

7.10 Effect of ELPS Page Size on Execution Time 105

7.11 Effect of ELPS Page Size on Overflow Frequency . . 108

7.12 Effect of ELPS Page Size on Internal Fragmentation 108

9.1 Access Ratios for Shared and Local Memory Areas . 123

9.2 Average Access Time for Shared and Local Memory Areas . 123

9.3 Execution Time and Bus Utilization of Single Bus vs. Two Tier . 125

9.4 High Bandwidth Memory Access Locality 129

9.5 Write Percentage of Local Data . 131

9.6 Performance of Broadcast for Invalidation Coherency Scheme 132

Vlll

List of Figures

2.1 Two Categories of Shared Memory Multiprocessors 9

2.2 Components of a Prolog Program . 14

2.3 Prolog Program and Corresponding AND/OR Tree. 17

2.4 AND-Parallel Tree 18

2.5 OR-Parallel Tree 19

2.6 AND-OR Parallel Tree . . 19

3.1 Memory Hierarchy and Storage Device Relative Speeds and Costs 24

3.2 Examples of Allocation Strategies . 26

3.3 Stack Usage Behavior 30

3.4 Tasks in Global Memory Space . . . 32

3.5 Conceptual View of a Cactus Stack . 35

3.6 Stack Set per Processor Memory Model 36

3.7 Stack Set per Task Memory Model . . . 37

4.1 FLx-sized versus ELPS Variable-sized Stacks . 47

4.2 Two Link Storage Schemes for ELPS 49

5.1 Program Transformation
5.2 NuSim Simulator Framework
5.3 Task Communication
5.4 The Multi Architecture
5.5 Simulation Run with NuSim Debugger

5.6 Simulation Run with GDB (C-language) Symbolic Debugger

5.7 Multi-level Debugging with NuSim Debugger and GDB

5.8 A Sample Setup of the xNuSim Graphical Interface .

5.9 Hardware Support for Out-of-Page Check

58
60
63
65
68
69
70
72
76

7.1 Disadvantage of Combined Environment/Chokepoint Stack 93

7.2 Task and Processor Parallel Execution Behavior of Boyer 104

7.3 Average Effect of ELPS Page Size on Execution Time 107

8.1 The Aquarius-II Multiprocessor Architecture 114

8.2 Multiprocessor Architecture with Caches at Each Crossbar Switchpoint 116

ix

8.3 Mapping of the PPP Storage Model onto the Two-Tier Memory System 120

9.1 Average Access Percentages of Shared and Local Memory Areas . . 124

9.2 Task Run Time Behavior of Single Bus vs. Two Tier (for Quicksort) 127

9.3 Task Run Time Behavior of Single Bus vs. Two Tier (for Queens6) . 128

X

1

Chapter 1

Introduction

1.1 Motivation: The Memory Management Problem

As computer systems are being used to solve more complex problems, higher level

languages are devised to allow the programmers to express their solutions in more natural

terms. The programs are written in ways that are closer to the thought process and further

away from the tedious details and constraints that exist in every computer system. This puts

greater strain on the system implementors to provide efficient support in terms of library

subroutines or high-level language constructs. In some areas of applications, particularly in

the area of artificial intelligence, the problems require enormous symbolic processing power

for a vast amount of information, in addition to the traditional arithmetic processing power.

In terms of computer architecture, symbolic processing translates to simple comparison,

complex pattern matching, transfer, and storage of data. Computer systems contain a

hierarchy of storage designed to minimize cost while maximizing performance. Efficient

management of the available memory space allows larger programs to run in a short time.

While imperative languages (e.g. Pascal, C) require the programmer to explicitly allocate

and deallocate memory for dynamic data structures, functional languages (e.g. Lisp) and

logic programming languages (e.g. Prolog) have automatic memory allocation which frees

the programmer from the tedious details of memory management.

Prolog [CM87], a programming language based on first order predicate logic [Llo87],

has found its niche in the area of natural language processing, expert systems, compiler

construction, geometric modeling, and design automation. Its features include pattern

matching (unification), natural expression of non-determinism (via backtracking), the single-

2 CHAPTER 1. INTRODUCTION

assignment logical variable, and dynamic typing. These features combine to allow program­

mers to express algorithms in very compact code. In addition, the simple syntax and

semantics of Prolog provides a useful vehicle for expressing parallelism. Two types of par­

allelism that exist naturally in Prolog are AND-parallelism, which computes subparts of a

potential solution in parallel, and OR-parallelism, which explores alternative solutions in

parallel.

On the negative side, Prolog is very memory intensive, both in terms of frequency

of memory accesses and of memory space usage. The high frequency of memory access is

characteristic of symbolic processing, where large amount of data needs to be transferred

and compared. This behavior is in contrast to numeric applications, where the ratio of

operation time to data transfer time is higher. Execution of Prolog requires a larger memory

space than other languages due to two of its features: single assignment and automatic

backtracking. At the source language level, the single assignment feature does not allow

rewriting of the same memory location once a value has been assigned to it, and thus a new

memory location has to be used. The backtracking feature requires the saving of program

state and variable bindings to be restored upon backtracking. The storage space must be

allocated dynamically due to the dynamic typing.

In sequential execution, memory management is largely a garbage collection prob­

lem. Numerous garbage collection techniques have been proposed for Lisp systems, and

some of this technology can be transferred over to Prolog [TH88]. The Warren Abstract

Machine [War83] contains stack mechanisms that can very efficiently recover unused space

upon backtracking, which is when a program search path is terminated and an alternative

path is explored. For highly deterministic programs in which little backtracking occurs, the

stacks continue to grow and garbage collection is needed [TH88].

For parallel execution, memory management takes on a new perspective. In a

parallel execution model for Prolog such as the PPP Execution Model [Fag87], many tasks

are created to traverse the multiple branches of the Prolog tree structure. Each of these

tasks has its own data space for storing its intermediate results, and may read data stored

in other data spaces. A global address space is needed to facilitate such extensive data

sharing among the tasks. For efficiency reasons, an address should fit inside a register, and

thus the global address space available to the tasks is often limited by the width of the

address register in the processor. With today's VLSI technology, the address registers of

most commercially available processors are typically 32-bit wide, and some are 40-bit wide.

1.2. THE THESIS 3

This restriction means that the address space must be distributed more efficiently among

the parallel tasks, such that each task has sufficient space for private and shared data while

maintaining fast access to them.

1.2 The Thesis

This dissertation examines two aspects of memory management for parallel execu­

tion of Prolog on shared memory multiprocessors: efficient space assignment for the parallel

tasks and fast access to both shared and non-shared data. The thesis to be presented in

this dissertation is as follows:

• With respect to space, a dynamically-allocated, hybrid heap-stack scheme can efficiently

support the space requirements of a very large number of parallel tasks within a limited

space, thus allowing the potential parallelism to be fully realized by the execution model.

• With respect to time, a two-tier memory architecture- which has separote synchro­

nization memory and high-bandwidth memory - can significantly reduce the synchro­

nization bottleneck in a shared memory multiprocessor environment.

1.3 Research Direction

Memory management for parallel execution of Prolog must take into consideration

the various levels: the language data space organization, the virtual address space of the

system architecture, and the system's physical memory. For complete control over the

system's architectural parameters and for ease of instrumentation, we chose a simulation

approach for our studies. Compared to analytical and stochastic modeling, simulation also

provides more accurate performance estimates. As part of this dissertation, a complete

system simulator has been written to simulate a parallel execution model of Prolog on a

multiprocessor architecture. The simulator models a shared-memory multiprocessor system,

with VLSI-PLMs as the processing units. The VLSI-PLM [STN*88] is a high performance,

single VLSI chip, processor for compiled Prolog that has been fabricated and successfully

tested. The simulator also models hardware extensions to the VLSI-PLM for supporting

parallel execution and memory management.

Among the various parallel execution models that have been proposed, we choose

4 CHAPTER 1. INTRODUCTION

the PPP execution model by Fagin [Fag87] for study of parallel execution of Prolog. The

reasons are as follows:

• The PPP is based on the WAM, which is an efficient and well understood engine for

sequential execution of Prolog. Much research has been done at UC Berkeley on the

PLM, a special-purpose architecture for Prolog, and we have learned a great deal

from our past experience. The PPP model was also developed at UC Berkeley and is

well-understood here.

• The PPP stt.pports both AND- and OR-parallelism. Early experience with parallel

execution indicates that AND-parallelism is good for some Prolog programs while

OR-parallelism is more effective for others.

• The PPP employs a shared memory architecture. Currently, shared memory multi­

processor architectures enjoy the greatest commercial success. Systems such as the

Sequent Balance [TGF88] and Encore Multima.x [WWS*89] are widely used due to

their low cost/performance ratios. Shared memory systems are easier to understand

and to program, and free the programmer from low level memory architecture de­

tails. Since the PPP execution model exploits "medium-grain" parallelism in Prolog,

a shared memory system is necessary to minimize the communication overhead.

Initial performance results of the PPP execution model reported by Fagin in [FD87]

paint a dim picture of the performance of the PPP, with little speedup obtained from the set

of small benchmarks. Later results reported in his dissertation [Fag87] are more encouraging.

For the PLM compiler benchmark, a speedup of 7.6 was obtainable with 11 processors. In

any case, we believe that these results are inconclusive and deserve further studies because:

• The PPP creates many sleeper tasks which waste memory, and sequential execution

is forced when there is no more task space available.

• As pointed out by Fagin, most of the Prolog programs in his benchmark set are small

(in terms of time and space requirements) and are inherently sequential 1 • Larger

benchmarks are needed for a more appropriate evaluation of the execution model.

1 Note that it is always possible to write a. computer program that is strictly sequential thus no speed

up is possible on any execution model. Clearly parallel execution models are effectively only with programs

that have some inherent parallelism.

1.4. CONTRIBUTIONS 5

• The PPP model, as described by Fagin in his dissertation, is a first cut at parallel

execution, and leaves out a number of details needed for practical implementation and

efficient execution. This research fills in some of those gaps, particularly in memory

management. The lack of memory management in this model prevents the large

benchmarks from being run in Fagin's PPP simulator. The large benchmarks, which

exploits medium-grain parallelism, can potentially have the greatest performance gain

in this model.

• The PPP simulator written by Fagin uses an ideal, single-cycle memory. The simu­

lator used in this research contains realistic memory parameters for a more detailed

evaluation of the execution model.

1.4 Contributions

The issues of efficient parallel execution in the PPP are similar to those of other

parallel models, issues such as task creation, termination, and communication, The issue

of memory management for parallel execution was not addressed in Fagin's dissertation,

This research fills the memory management gap for the PPP execution model in particular,

as well as for other parallel execution models with similar data organization and memory

behavior. The contributions of this research include:

1. a dynamic memory management scheme to facilitate sharing among parallel tasks

executing in a shared memory multiprocessor;

2. a flexible, low-level simulator for complete system simulation, including the parallel

execution model, the cache, and the memory interconnection network of the multi-

processor;

3. a detailed simulation study of the memory behavior of a parallel execution model

of Prolog on a shared memory multiprocessor architecture and the evaluation of the

proposed dynamic memory management scheme; and

4. a feasibility study and a preliminary performance analysis of a two-tier memory archi­

tecture for shared memory multiprocessors which separates synchronization and write

shared data from read shared and local data.

6 CHAPTER 1. INTRODUCTION

1.5 Dissertation Outline

This dissertation is divided into ten chapters:

• Chapter 1 has provided the motivation, the research direction, and the contributions

of this dissertation.

• Chapter 2 discusses shared memory versus message passing systems and parallel

execution on multiprocessors.

• Chapter 3 provides a literature survey on memory management support for sequen­

tial and parallel execution of Prolog.

• Chapter 4 introduces a dynamic memory management scheme for parallel execution

of Prolog. This hybrid stack-heap mechanism, called Explicitly Linked Paging Stack

(ELPS), utilize the available address space more efficiently.

• Chapter 5 describes the simulator used in the research. It is a complete system simu­

lator, simulating the parallel execution model as well as the underlying multiprocessor

architecture.

• Chapter 6 presents the methodology used in validating the simulator. The simulation

results are compared with those of a previously validated simulator.

• Chapter 1 reports the memory behavior of the PPP parallel execution model for

Prolog, and the simulation results of the ELPS memory management mechanism

with various parameters.

• Chapter 8 describes the Aquarius-II, a multiprocessor architecture with a two-tier

memory system. This architecture is designed to reduce the synchronization bottle

neck of a single bus system by using a crossbar for unsynchronized data transfers.

• Chapter 9 reports the simulated performance results of the Aquarius-II cache and

memory system.

• Chapter 10 provides some concluding remarks and directions for future research.

7

Chapter 2

Multiprocessors and Parallel

Execution

2.1 Multiple Processor Systems

The demand for very fast computation continues to outgrow the existing state-of­

art computer systems. Steady advances in processor and memory system designs, digital

circuit design, and high density packaging have greatly reduced the sequential execution

time. Parallel processing holds the promise of further reducing the execution time by sev­

eral orders of magnitude. Numerous architectures have been designed and built with tightly

coupled multiple processors for parallel processing. With respect to the memory organi­

zation and interprocessor communication, these systems generally fall into two categories:

message-based multicomputers and shared memory multiprocessors.

2.1.1 Message-Based Multicomputers

In a message-based multicomputer, each processor has access only to its private,

dedicated data memory. Each primitive element is a computer (processor-memory pair).

Communication among computers is either via fixed paths or via some message switching

mechanism. Data sharing is done by passing messages through these specialized communica­

tion channels. In addition to the data content, a message includes a header with information

regarding the source, destination, and message type. Some information in the header can

be omitted if it can be deduced implicitly from the communication channel used and the

8 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

time of arrival (handshaking communication protocol). Duplication of shared data, message

packing, and message unpacking add to the communication overhead.

Various communication network topology may be used in message-based systems.

The Intel iPSC [Int86], the Ncubeften [HMSe86] and the Connection Machine [Hil86] use

a hypercube topology, systolic arrays [Kun82] use various array structures to fit with the

intended algorithm, and transputer [Whi85] based systems can be connected in any fashion

with each processor having up to 4 neighbors. Descriptions and performance evaluations of

message-based systems can be found in [RF87].

Message-based architectures are scalable to thousands of processors. The Intel

iPSC/d7 is a seven dimensional hypercube with 128 processor nodes. Each node contains

an 8MHz Intel80286 microprocessor, a 6MHz 80287 floating point coprocessor, 512K bytes

of dynamic RAM, and 64K bytes of ROM. The Ncube/ten contains 1024 custom VLSI

processors. The main reason for the scalability of message-based architectures is that the

number of connections of each processor node to neighboring nodes is either constant or

increases very slowly with respect to total the number of nodes. For example, each node in

the hypercube has log2 (n) number of connections, where n is the total number of nodes.

Efficient parallel execution on a message-based system requires that the message

are small with respect to amount of work done at each processor node, and thus data sharing

is kept to a minimum. Furthermore, the algorithm used must be well mapped onto the

network topology, since passing a message to a distant processor incurs the latency of going

through intermediate processor nodes. Programming a message-based system requires great

care in problem partitioning and allocation of the processors for solving these subproblems

in paralleL Parallel programming on these systems may be difficult, especially when the

interconnection network has to be considered explicitly [Dem82]. How to compile for efficient

execution an arbitrary program not designed specifically for a particular interconnection

network is an open issue.

2.1.2 Shared Memory Multiprocessors

In shared memory multiprocessors, each processor may access any memory lo­

cation. Memory may be organized in a "dance hall" fashion or distributed among the

processors, as shown in figure 2.1. From an operating system perspective, the dance hall

organization results in a uniform memory access (UMA), while the distributed organization

2.1. MULTIPLE PROCESSOR SYSTEMS

interconnection network

"dance hall" shared memory P - processor
M-memory

interconnection network

distributed shared memory

Figure 2.1: Two Categories of Shared Memory Multiprocessors

result in a non-uniform memory access (NUMA) [BGW89].

9

In the "dance hall", each processor may directly access any memory location in

fairly1 constant time. There is no local memory to each processor. Each processor may

contain a local cache to speed up accesses of adjacent locations (spatial locality) and frequent

accesses to the same location (temporal locality). In the context of this discussion, caches

are viewed as special hardware managed buffers, and not as ordinary memory. From the

processor viewpoint, variations in memory access times are due to cache misses, contention

on the processor-to-memory interconnection network, and memory bank conflict. Many of

today's commercial multiprocessors employ shared memory with local caches on a single bus.

The Sequent Balance [TGF88], the Encore Multima.x [Enc85], and Alliant FX/8 [PM86] are

among the bus-based shared memory multiprocessors. These systems are generally referred

to as multis [Bel85].

In the distributed shared memory organization, each processor has a local mem­

ory which can be accessed in fast constant time. It may also go through an interconnection

network to access the memory of other processors in fairly constant time, at a much greater

latency than accessing its local memory. Examples of distributed shared memory multi­

processors include Cm* [Geh87], the IDM RP3 [GF 85], and the BBN Butterfly [CGS*85].

The BBN Butterfly GP1000 can support up to 128 processor nodes, each with 4 MBytes of

memory and a Processor Node Controller (PNC) that manages all memory references. A

1 infrequent cache misses and fast fetching of a. ca.che miss

10 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

non-local memory access across the switch takes about 5 times longer than local memory

access.

Shared memory multiprocessors have a number of advantages over message-based

multicomputers:

• Efficient data sharing. Since all memory locations are visible to all processors, shared

memory systems can efficiently support extensive data sharing in parallel execution.

Passing data from one processor to another requires only a pointer to where the data

are stored.

• Flexible interprocessor communication. Interprocessor communication using shared

memory is much more flexible than using messages. It can be done using software

specified memory locations. Depending on the type of interconnection network used,

broadcasting to multiple processors may be possible and would be much more efficient

than point to point communication.

• Ease of programming. Proper mapping of the problem partitions onto the multiple

processors is less critical than in message-based systems, and more dynamic schedul­

ing may be done to balance the load on the processors. Given the structured topology

of the processor nodes, scheduling in message-based systems is more static in nature

(usually done by the programmer or by the compiler). This ease of programming also

means that existing software can be compiled for parallel execution with little modi­

fications (particularly when compiling for uniform memory access multiprocessors).

The performance of shared memory architectures depend heavily on the perfor­

mance of the interconnection network. As the number of processors increases, the intercon­

nection network becomes a bottleneck. Depending on the speed of the bus relative to the

processor, the single bus can support from 4 to 32 processors before it saturates. Cross­

bars provide the highest bandwidth with the greatest hardware complexity (order of p x m,

where p is the number of processors and m is the number of memory modules). With

current technology, a bit-slice 16x32 crossbar can fit on a single chip [Sri88]. Multi-stage

networks are less expensive than a full crossbar, but incur a network delay in the order of

log(m) to go through the switch, assuming that the number of processors is less than the

number of memory modules.

2.2. PARALLEL EXECUTION ON MULTIPROCESSORS 11

Compared to message-based systems, shared memory systems (particularly those

with the "dance hall" organization) have two challenges to overcome:

• Scalability. Shared memory systems are less scalable because the number of logical

connections to neighboring nodes is n- 1, where n is the total number of processor

nodes. Due to interconnection network contention, each new node can potentially

block the others from accessing the shared memory.

• Interconnection network complexity. To reduce network contention, more complex

network switches are needed and thus the network complexity and cost are increased.

However, the advantages of shared memory (particularly the ease of programming

for a large class of algorithms) drive researchers to design for cost effective large scale shared

memory systems. Such systems with coherent caches have been proposed for thousands of

processors. These systems use a hierarchy of buses [Wil87a, Arc88, CGB89], a multidimen­

sional array of buses [GW88, CD90], or a hierarchy of crossbars [Sri89].

2.2 Parallel Execution on Multiprocessors

Parallel processing on multiprocessors involves partitioning a problem for execution

on two or more processors. This section examines the software aspect of parallel processing.

The design of a parallel execution model usually includes the following two goals:

1. to provide an easy-to-program environment that requires the user to know little about

the underlying architecture, and

2. to take full advantage of the multiprocessor system.

The cost of software development is a substantial part of a computer system, and often

exceeds the hardware cost. The first goal provides cost effective software development and

portability across different machines in the same class of architectures. The second goal

exploits the performance potential of the multiprocessor architecture. The following are

issues and tradeoffs involved in parallel execution:

• Specification of parallelism. A program may specified for parallel execution by us­

ing explicit annotations (e.g. parbegin--parend) or implicit parallel detection (e.g.

vectorizing compilation and dataflow dependency analysis).

• ~

12 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

• Granularity. The length of time which a. program partition runs before terminating

varies from a. few cycles (fine grain parallelism) to millions of cycles or more (very

large grain parallelism). The exact size of each medium grained partition is often not

known. For efficient execution, the grain size should be much larger than the creation,

communication, and termination overhead.

• Scheduling. Compared to distributed scheduling, centralized scheduling has more

information for better load balancing, but may be a. bottleneck as the number of

processors get to be large. The scheduler must take into account the underlying

architecture, particularly the cost of task switching and task migration. The scheduler

must also consider the data dependencies of the parallel tasks to quickly obtain the

solution given the limited resources.

• Data sharing. The degree of data. sharing among parallel tasks depend on the memory

organization and the class of application programs. Some programs are computation

intensive with few data. elements while others require scanning a large database for

the solution.

Up to this section, we have discussed parallel execution in quite general terms.

From this point on, we will focus on the parallel execution of Prolog and its requirements

for memory management.

2.3 Prolog and Its Applications

Prolog is a programming language which is based on the theoretical foundation of

logic [Llo87]. Originated around 1970 from the University of Marseille, it has gained greater

acceptance and popularity in recent years as a. very useful language for numerous artificial

intelligence, symbolic processing, and other applications. It has been used successfully

for natural language processing (PS87, Dah88, HHS88], programming language compilation

[VR84, CVR86], structured analysis tools [Doc88], and computer aided design for electronic

circuits [BCMD87b, Clo87, Rei87, Rei88]. In addition, it has been used in a number of

knowledge representation and expert systems [IH88, Shi88, WMSW87], and has been found

to be very useful as a hardware description and simulation language [BCMD87a]. A logic

programming language, called KLl [KC87], has been chosen as the official language for the

Fifth Generation Computer Project in Japan [FM83].

2.3. PROLOG AND ITS APPLICATIONS 13

As the usage of the language increases, the demand for faster implementations

of Prolog also rapidly increases. While some researchers work to optimize Prolog com­

pilation and to devise more efficient sequential execution models, others are in search

of efficient ways to exploit the great amount of potential parallelism in Prolog. Prolog

naturally exhibits two types of medium grain parallelism: AND- and OR-parallelism. A

number of parallel execution models have been proposed for Prolog. Some exploit only OR­

parallelism (Lin84, CH86, HCH87, War87a, War87b, DL087, BDL*88, LBD*88] or only

AND-parallelism [Deg84, Her86, BR86, DeG87, Lin88, CVR88], while others exploit both

types of parallelism [Con83, Bor84, Kal87, Fag87, BdKH*88, BSY88].

2.3.1 Prolog Terminology

This subsection provides a very brief introduction to Prolog, intended to famil­

iarize "non-Prolog" readers with the language terminology, syntax, program structure, and

execution semantics. This is the foundation for understanding the different types of par­

allelism that exist and how a parallel execution model may support them. A number of

books are available on programming in Prolog [CM87, CC88, 5586]. Interested readers may

consult them for a more detailed explanation of the language and programming techniques.

Prolog programs and data are represented by terms. Terms may be simple (vari­

ables or constants) or compound (structures). Constants are numbers or atoms. Atoms

begin with lower case letters and variables begin with capital letters. A structure consists

of a functor, which is the name of the structure (represented by an atom) and its arity, and

arguments. Each of the arguments of a structure is, in tum, a term. A list is a special case

of a structure with the special list functor and two arguments, the car and the cdr (as in

Lisp).

A Prolog program consists of a query and one or more procedures (see figure 2.2).

A procedure is defined by a set of clauses and it is executed by processing its clauses

in sequence until one succeeds. If none of the clauses can be executed successfully, the

procedure fails. The process by which a procedure tries successive clauses until one succeeds

is called backtracking. It involves restoring the state of the machine to what it was before

the clause was tried so that the next clause in the procedure can be tried. A clause is a

complex term that consists of a head and optionally, a body. The head of a clause is also a

term that has a functor (the name and arity of the functor uniquely identify the procedure

14 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

query

?- m(X,b).

head body
I I r-~-----,

m(X,Y) :- f(X), c(Y,X).] rule ,,
arguments

procedure f(j).

L__j ,_j ____ _,

't goals

[

f(k).

f(l).] unit clause

atoms
c(a,k).

c(b,j).

Figure 2.2: Components of a Prolog Program

of which the clause is a part) and zero or more arguments. The arguments of a clause head

are also terms (simple or complex), and represent the formal parameters of the procedure.

The body of a clause, if any, consists of one or more goals (procedure calls). Clauses that

have no body are called unit clauses or facts; otherwise, they are referred to as rules.

A clause succeeds when all the input arguments have been unified with the argu­

ments of the clause head and all the goals of the clause have been successfully executed.

Unification is the process by which a set of substitutions or bindings of the variables in the

two expressions being unified result in identical expressions. H no such set of substitutions

exists, the unification fails. H a goal fails, an alternate solution to the previous goal is

computed. Then the goal is executed again. H no other solution to the previous goal can be

found, the goal fails and an alternate solution to the goal before that is computed. Thus,

Prolog finds a solution to a query by a depth first search of the solution tree. A clause fails

if a consistent solution for all of its goals cannot be found.

Prolog, as a logic programming language, has the following combination of features

that set it apart from other programming languages:

• Logical, Dynamically Typed Variables. There is a concept of binding for Prolog vari-

2.4. PARALLELISM IN PROLOG 15

ables, in which an unbound variable gets attached to a single item. That item may be

a simple value, and complex term, or even an unbound variable. The variable's type

is dynamic: it changes according to the item it gets bound to. Each variable may get

bound at most once, and is thus referred to as single-assignment. However, a bound

variable may be unbound upon failure of the clause. From an implementor's point

of view, single-assignment variables allow for a greater degree of parallelism while

requiring more memory space.

• Unification. This pattern matching, although with a very specific set of rules, is

powerful enough for numerous uses in text processing and database queries. Hardware

tagging support can significantly speed up unification [KTW*86, Dob87b, ABY*87],

particularly for type checking of Prolog's dynamically typed variables.

• Backtracking. Prolog's automatic support of non-determinism using backtracking

makes it very easy to express non-deterministic algorithms in their natural forms. The

cost of this support is for recording variable bindings (called trailing) which are undone

upon backtracking. Using flow analysis, recently developed compiler techniques have

made this cost insignificant [VR90].

2.4 Parallelism in Prolog

In order to adopt logic programming for parallel execution, a number of parallel

logic programming languages have been introduced to avoid the backtrack mechanism that

exist in standard semantic of Prolog as defined in [CM87]. These languages are referred

to as committed-choice languages. Some examples of committed-choice languages are Con­

current Prolog [Sha86], Parlog [CG86}, and Guarded Hom Clauses (GHC) [Ued85]. These

languages are more suitable for operating system applications, while the standard seman­

tic of Prolog provides a more general purpose programming language with a wide range

of applications [Llo87}. Therefore, our approach concentrates on exploiting parallelism in

standard Prolog.

With its simple syntax and regular structure, a Prolog program is inherently an

AND /OR tree. Execution ofthe program is primarily a depth :first, left to right traversal of

the tree nodes. All the sibling AND nodes are traversed depth :first, left to right, whereas an

OR node is traversed only if all the siblings to the left of it had failed. Backtracking allows

16 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

for automatic exploration of previously untried alternatives. It is also the cause for a great

deal of complications in efficient parallel implementation. For this reason, some researchers

are looking into combining the features of Prolog and committed choice languages [HB88].

Figure 2.3 shows a Prolog program with its corresponding program tree. The

arrows show the traversal of the nodes, which is equivalent to the execution of the program.

The solid arrows show the forward execution, while the dashed arrows show backward

execution.

The work done at each node consists of unifying the calling parameters with the

head arguments of the clause, and setting up the parameters for calls to its subgoals. In

addition, the work in the body of the node may involve applying some functional primitives

known as built-ins for arithmetic operations, input/output, data structure manipulations,

and code alterations.

2.4.1 AND-Parallelism

Inspecting the program tree, it seems natural that the branches of the tree can

be executed in parallel. This has been observed and studied by Conery [Con83] and oth­

ers [Deg84, Her86]. When the partitioning is done at a clause node, where calls to subgoals

are to be done in parallel, it is known as AND-parallelism. Figure 2.4 shows the partitioning

of the tree in Figure 2.3, where the spawned processes are separated from the root process

with dashed lines.

The main difficulty with AND-parallelism is the problem of binding conflict, where

more than one AND subtree executing in parallel attempt to bind the same variable to dif­

ferent values (e.g., variable X in the figure above). A solution of this problem requires some

synchronization mechanism for shared variables, in addition to some merging scheme for

combining sets of variable bindings returned from the non-deterministic goals. Since such

a scheme results in enormous run time overhead, a more constrained alternative, known

as independent {restricted) AND-parallelism, is often chosen. This restriction requires that

all subgoals to be executed in parallel must not attempt to bind a shared variable. This

restriction can be ful:filled by either compile time analysis [Cha85], or by a run-time check

[Deg84, Her86]. An alternative to independent AND-parallelism which does not require

merging of answers is the producer-consumers approach [LM86, Lin88], where each vari­

able is designated one producer goal while the other goals are designated as consumers of

• II

2.4. PARALLELISM IN PROLOG

m(X,Y) :- f(X), c(Y,X).

f(k).

f(j).

f(l).

c(a,k).

c(b ,j).

~t/

OR nodes

Figure 2.3: Prolog Program and Corresponding AND/ 0 R Tree

17

18 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

AND-parallel tasks

Figure 2.4: AND-Parallel Tree

the variable. A consumer goal must suspend until the producer goal of that variable has

completed its execution.

2.4.2 OR-Parallelism

When the program execution is partitioned at a procedure node, with broken

branches to clause nodes which show alternative clauses that give several solutions, the

parallelism exploited is known as OR-parallelism. The task which executes one of the

OR branches can continues with the next goal in the parent's clause. In figure 2.5, the

task completing the first clause of f (X) continues with the next goal c (Y, X), with X now

instantiated to the value k. Thus the results are passed down the execution tree and the

final solutions are available at the leaf tasks.

When OR-parallelism is combined with AND-parallelism, the results of the OR­

tasks may be passed back up to the parent AND-task. In figure 2.6, the goals f (X) and

c(Y ,X) are executed in AND-tasks. OR-tasks are then spawned to execute the clauses off

in parallel. The results of these OR-tasks are passed back to the parent task. The OR-tasks

do not proceed with the next goal (c(Y,X)) because it is already being executed by an

AND-task. This is referred to as containment by Fagin [Fag87].

OR-parallel clauses may share argument variables in the head, but bindings of

2.4. PARALLELISM IN PROLOG

OR1)811111el tasks

Figure 2.5: OR-Parallel Tree

...

c~·~·
' t /' OR-parallel tasks

Figure 2.6: AND-OR Parallel Tree

19

20 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

these arguments must be hidden from the ancestor nodes until that OR node is actually

traversed (in the sequential semantic order). The challenge in implementing OR-parallelism

is to resolve the binding conflicts in a space and time efficient manner. For example, the

OR-tasks of the goal f (X) may attempt to bind X at the same time. Thus, each of these OR

subtrees must contain a separate binding environment. Efficient handling of these binding

environments are being studied by various researchers [War87b, DL087, CH86, Bor84,

HCH87]. A simple simulation study by Cra.mmond [Cra85] provides preliminary indication

that the hash window scheme [Bor84] yields the best performance. However, more recently

work by Warren and researchers at Argonne National Lab have presented some promising

hybrid schemes combining hash windows with binding arrays [War87a]. Explanations of

these schemes are provided in section 3.4.5.

2.4.3 Other Types of Parallelism

Other types of parallelism have been identified for Prolog. Consider the following

example:

?- m(sC ..), [_ __], X).

m(s(...) , [___], X) :- a(l, X), b(X). (ml)

a(l ,X) :- . . . (al)

a(1,[3,5]) :- (a2)

a(2 ,X) :- . . . (a3)

b(0). (bl)

b([HIT]) :- ... (H), b(T). (b2)

Stream-parallelism (Sin90, LP84, Mea83] exists when a producer goal can pass a

stream of values (elements of a list) to the consumer goal in a pipelined fashion. In the

example above, a(l,X) is the producer of X while b(X) is the consumer. a and b can be

executed in parallel, with b operating on an element in the list X while a is producing the

next element.

2.5. PROCESSES AND TASKS 21

Search-parallelism allows the heads of all clauses in a procedure to be unified with

a given subgoal. This can be viewed as a simplification of OR-parallelism. In the example

above, the search for the clauses that can match with a (1 , X) can be carried on in parallel,

resulting in the list of two clauses [(al), (a2)].

Unification-parallelism [Sin90, Cit88, Sin88] carries out the unification of the ar­

guments in the clause head in parallel. In the example above, the structure s (...) and

the list [_J in clause head of m1 can be unified with their calling arguments in the query

m concurrently.

Depth-parallelism [Sin90, Sin88, BG87] carries out the unification of the head of a

clause concurrently with the unification of a su bgoal of the clause. In the example above, the

unification of the arguments in m can be done concurrently with the unification of arguments

in a.

All types mentioned in this subsection explore parallelism at a finer grain, below

the Prolog clause/procedure level (medium grain). They will not be discussed further since

this dissertation concentrates on memory management for the clause/procedure level of

parallelism.

2.5 Processes and Tasks

From an operating system level perspective, a process is an execution environment

of a program, with its own address space. This is in accordance with the definition of a

Unix process [QSP85], where there is a separate virtual address map for each process. Two

or more processes may share a memory block only if their virtual addresses are mapped

onto the same physical page.

In this thesis, we use the term task to refer to a light-weight process that shares a

global address space with other light-weight processes. A task contains only the execution

state of the program (i.e., registers and stack pointers). Other similar terms are thread

and chare [SKR88]. Tasks are spawned for concurrent exploration of the Prolog search

tree. The language level notion of a task is the execution of a section of code (one or more

continuous nodes in the tree), with a section of data which corresponds with that execution.

Depending on the paths that tasks represent, they may be allowed to proceed in parallel,

with occasional communication among each other.

22 CHAPTER 2. MULTIPROCESSORS AND PARALLEL EXECUTION

2.6 Chapter Summary

In this chapter, we discuss two general categories of multiple-processor systems:

message-based multicomputers and shared memory multiprocessors. We focus our attention

on shared memory multiprocessors because they have the following advantages over message­

based multicomputers: efficient data sharing, flexible interprocessor communication, and

ease of programming.

We also present Prolog, a logic programming language that has found wide use in

natural language processing, expert systems, and many other applications involving sym­

bolic computation. We choose Prolog for our parallel execution and memory management

support studies because of its intensive memory usage nature that require efficient memory

management. In this dissertation, we focus on the memory management support for two

types of medium grain parallelism in Prolog: AND-parallelism and OR-parallelism.

23

Chapter 3

Memory Management: Issues and

Past Solutions

3.1 Issues in ~er.nory ~anager.nent

"Memory management" is a broad term that covers numerous issues in managing

the storage space available in a computer system. The complexity of memory management

increases as the layers in the memory hierarchy increases. This chapter discusses the issues

in uniprocessor and multiprocessor memory management, and reviews some approaches

previously taken by researchers to solve them.

Cost is a main consideration in the design of memory systems. It is often kept

constant while tradeoffs are made to obtain the highest performance, namely the ability

to access maximum amount of space in minimum amount of time. A memory hierarchy

(figure 3.1) typically contains multiple layers of different types of storage devices to take

ad vantage of the access time of fast devices (such as fast static memory) as well as the low

cost, large space of slower devices (hard disks). The table in figure 3.1 shows typical speeds

and costs of the various devices. The access times and prices are rough estimates based on

September 1989 advertised prices. The points of interest are their access times and costs

with respect to one another. At the highest level (shortest latency) of the memory, caches

are kept close to processor speed. Caches are expensive because they use high speed memory

chips and employ complex associative lookup. Caches also require storage space for address

tags. At the other end, hard disks provide non-volatile storage and an enormous amount

24 CHAPTER 3. MEMORY MANAGEMENT: ISSTJ"ES AND PAST SOLUTIONS

I Device I Speed (ns) I Cost ($) I $/Mbyte I
Static Memory (32 Kbyte) 15 400 12,500

Dynamic Memory (2 Mbyte) 80 300 150

Hard disk (100 MByte) 25,000 1000 10

Figure 3.1: Memory Hierarchy and Storage Device Relative Speeds and Costs

of memory space at very low cost (and the price/space ratio continues to drop). With new

technologies emerging, such as a removable 256 Mbytes optical disk for $50 (not including

the optical disk drive), more space is available at much lower cost (and faster access time).

There are two key factors in memory management: space and time. Given a

memory architecture with specified memory sizes and communication network structure,

heuristics or algorithms are then developed to make efficient use of system resources. Re­

garding space, two aspects need to be considered:

1. validity of data

If the data stored in a given memory location becomes invalid (or will never be used

again), that space may be reclaimed; otherwise, the data must be preserved.

2. system addressability

There is an upper limit to the size of memory that can be addressed. For fast access,

this limit is dependent on the width of the address register and the datapath internal

to the processor. Various segmentation schemes increase the addressability at the

cost of loading and reloading segment registers, and limiting the address range that

3.2. MEMORY MANAGEMENT TECHNIQUES: A HISTORICAL PERSPECTNE 25

can be accessed a.t any given time. For example, the VLSI-PLM processor [STN*88]

ha.s a. 28-bit address register, but a. 29-bit address space. The most significant 29th

bit specifies code space or data. space, and is generated by the microsequencer of the

VLSI-PLM processor.

The time factor depends pri:ma.rily on the locality of accesses. Cache misses, virtual memory

page faults, a.nd remote accesses to memory module via. the communication network ca.n

incur severe performance penalty. Compared to a. cache hit, a. cache miss is typica.lly 5

times slower, a. remote memory access is 20 to 100 times slower (depending on the type of

interconnection network), and a. page fault is 5000 to 20,000 times slower.

3.2 Memory Management Techniques: A Historical Per­

spective

3.2.1 Virtual Memory

In the early days of computing, main memory wa.s very expensive, and thus wa.s

typica.lly sma.ll (6 to 24 kilobytes for minicomputers in the 60's [BM82] and 4 to 48 kilo­

bytes for personal computers in the 70's [SBN82] compared to toda.y's several to tens of

megabytes for personal workstations). Manual overlay wa.s a. commonly used technique,

where the programmer explicitly swapped a. portion of data. stored in memory onto disk

a.nd then swapped it back when needed. The introduction of virtual memory automated

the disk swapping process, and freed the programmer from having to manage low level sys­

tem resources. Both manual overlay and virtual memory solves the problem of insufficient

space for storing valid data..

Memory is used to store input and output data., a.s well a.s intermediate results.

After the data. have been last used, they can be discarded a.nd the space where they were

stored ma.y be reclaimed. Various garbage collection schemes scan the data. space to mark

the data. that are still valid a.nd to pack them together to leave the empty space for other

usage. Garbage collection ma.y be viewed a.s micro space reclamation since it operates a.t the

single memory cell level. Dea.lloca.tion of a. segment of memory, described in the following

section, can be viewed a.s macro space reclamation.

3.2.2 Allocation Strategies

26 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

1. Static allocation

global variables in C, Pascal, Fortran

''static•• variables inC

''COMMON'' variables in Fortran

2. Explicit dynamic allocation

via C functions ''malloc()•• and ''free()••

via Pascal functions ''new()''• ''mark()''• and ''release()''

3. Implicit dynamic allocation

stack: C and Pascal activation frames for function/procedure

control information, argument data, and local variables.

heap: storage for Lisp and Prolog ''cons cells,•• and

Prolog ''compound terms.••

Figure 3.2: Examples of Allocation Strategies

Memory may be organized into bigger chunks for allocation and deallocation.

Several allocation techniques have been devised to satisfy the needs of the programming

paradigms and to support the programming language features. In general, there are three

allocation strategies (see examples in Figure 3.2):

1. Static allocation

The compiler sets aside a fixed area of memory at compile time for use at run time.

Unless otherwise managed, this space can only be used for the purpose specified at

compile time and is never reclaimed for other usage. The advantage of static allocation

is simplicity in implementation and zero run time overhead.

2. Explicit dynamic allocation

Memory management is done at run time by the programmer. In this strategy, the

programmer explicitly requests a memory chunk of a specified size. Often, an allo­

cated memory chunk can be reclaimed only at the programmer's explicit instruction.

Occasionally, an "intelligent" operating system may be able to reclaim this space.

This strategy provides greater flexibility, but can be quite tedious and error prone.

3.3. SEQUENTIAL EXECUTION OF PROLOG 27

3. Implicit dynamic allocation

Memory management is done at run time by the system, without the programmer's

direct specification. This general strategy follows a stricter discipline than explicit

dynamic allocation, and is thus more robust and allows more to be done automatically.

The two most common structures are the stack and the heap. The stack structure

allows space to be managed in a rigid fashion: the last segment that was allocated is

the first to be deallocated. This rigidity minimize the overhead of dynamic memory

management. The heap structure can vary greatly in implementation, but it is always

much less restrictive than the stack structure (allocation and deallocation can be in

arbitrary order). A common characteristic in heaps is some sort of bookkeeping of

the dynamic space usage, either explicitly with special memory management pointers

to allocated areas and/or free areas (e.g., a free list), or implicitly by tracing through

active data objects. This characteristic allows space to be partially or fully reclaimed.

3.2.3 Data Organization and Memory Access Policies

Average memory access time can be reduced by organizing data to increase locality.

The stack structure exhibits greater locality than the heap structure. Tradeoff decisions can

also be made on whether to copy or to share data. Copying data is advantageous if the

cost of copying is offset by the time savings for faster accesses to the local copy of the data.

Throughput can be improved by overlapping operations. For example, a process may be

swapped out while waiting for a page fault to be serviced.

3.3 Sequential Execution of Prolog

3.3.1 Understanding Prolog Memory Requirements

For memory management to be more "intelligent," more information is needed

regarding the size of the data objects and the type of accesses that these data objects may

have. This section examines specifically the storage requirements of a Prolog engine.

As in any language, Prolog has three different entities that require storage: code,

data, and control information. As shown by figure 2.2, a Prolog program consists of a query

and a set of procedures, with each procedure containing one or more clauses. Prolog proce­

dures have two faces. In some cases, they are executable code. In other cases, they act as

28 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

data. stored in a. data. base, with the procedure name (or functor) as the index. In the most

complex case, data. is manipulated and transformed into executable code. Assert 0 and

retract() are Prolog builtin procedures that can modify the code database. Assert and

retract present great implementation complexity. They involve symbol table management

for on-the-fly compilation, efficiency of compilation and ofcode produced by on-the-fly com­

pilation, and proper linking with existing code for desired semantics. In this dissertation,

we concentrate on the issue of memory management for data and control information, and

do not handle assert and retract.1 We treat Prolog code as a static entity which cannot

be modified at run time. Thus a segment of memory can be statically allocated for storing

code.

There are four major types of data objects in Prolog: variable, atom, list, and

structure. V a.riables and atoms are of fixed length, usually require only one memory cell

each (the cell for an atom contains a pointer to the string table). Lists and structures,

on the other hand, can be arbitrarily large and are very dynamic in nature. These data

objects must be retained as long as the program does not backtrack. Thus, a heap is deemed

appropriate for providing dynamic storage for Prolog data objects.

Two types of control structures are needed for Prolog. First, an activation frame

is needed to store the return address at each procedure invocation. The pointer to the pre­

vious activation frame and local procedure variables are also stored in the activation frame.

The backtracking feature of Prolog requires an alternate clause frame to store information

regarding the next alternate clause to execute in case the current clause fails. The alternate

clause frames behave in a last in first out manner, with the last alternate clause frame

containing the first alternate clause to execute in case of failure. Thus, a stack is the most

appropriate mechanism for storing alternate clause frames.

With a. better understanding of storage requirements of Prolog, how can we best

manage memory for sequential execution of Prolog? The following section presents one very

well known answer.

1 In place of assert/retract, we provide two Prolog builtins set/2 and aeeess/2, which can behave like

assert and retract for a restricted class of Prolog procedures: the procedures with exactly one unit clause

each. Many Prolog programs which use assert and retract to store into and retrieve from the database can

be easily modified to use set and access instead.

3.3. SEQUENTIAL EXECUTION OF PROLOG 29

3.3.2 The WAM Stack Model

The Warren Abstract Machine (WAM) [War83] is an efficient engine for sequential

execution of compiled Prolog code. It is the single most widely studied abstract machine

for Prolog. The WAM has been simulated at the instruction level and register transfer

level [Dob87b] and implemented in microcode on the general purpose machines such as

the NCR/32-000 [FPSD85] and the VAX/8600 [JMP87]. Extensive performance studies

have been conducted by many research teams [Dob87b, Tic87, TD87]. The Programmed

Logic Machine (PLM) [Dob87b] is a specialized architecture developed at the University of

California at Berkeley to support an extended WAM instruction set. The PLM has been

built in TTL [DPD84] and VLSI [STN*88]. Other WAM-based architectures include the

Xenologic X-1 [Dob87a] (which is the commercial successor of the PLM), the Knowledge

Crunching Machine (KCM) [BBB*89], and PSI-II [NN87].

One of the most notable features of the WAM is its stack model for data storage,

which allows for efficient space recovery upon backtracking. The WAM memory model

consists of four stacks: the local stack, the global stack, the trail stack, and the push-down

list (PDL). The PDL is a small stack used for unification of nested lists and structures. Its

use is only within a unify instruction and thus will not be included in the discussion of the

major stacks. The PDL is on-chip in the VLSI-PLM [STN*88], the VLSI implementation

of the PLM architecture. The other three major stacks together form a set of stacks, called

a stack set [Her86].

The local stack contains the two types of frames described in the previous section.

Alternate clause frames, called choicepoints, save the state of execution (argument registers

and stack pointers) before trying one of several candidate clauses of a procedure. H the

clause fails, the chokepoint is used to restore these registers and stack pointers before

the next clause is executed. Activation frames, called environments, are similar to call

frames in a traditional programming language, with storage allocated for local variables

and procedure return pointer. Unlike traditional call frames, however, environments in

Prolog cannot always be deallocated after the procedure succeeds since the procedure may

be reinvoked to produce another solution. H a procedure has alternatives, there will be a

choicepoint above the environment of the procedure call.

The global stack is used to store dynamically allocated data structures (Prolog

variables, atoms, lists and structures) built up by the program. In the PLM, the global

30 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

t allocated space l. · · · ·
~ reclaimed space r····: J·-·--

stack
grows up

stack base

J ~-----,

time

Figure 3.3: Stack Usage Behavior

Each up arrow represents the amount of space requested during execution. The sum of all

up arrows is the total "allocated space." Each down arrow indicates the amount of space

reclaimed upon backtracking. With the stack mechanism, much of the allocated space can

be recovered and reallocated for new requests.

stack is called the heap because access to data stored in the global stack is not in a strict

last-in-first-out (LIFO) manner. The heap backtrack (HB) pointer marks the top of the

global stack at the time that a choicepoint is allocated. Upon failure of a clause, the current

top of the global stack pointer can be reset to the HB pointer, thus reclaiming all the space

that was used by the failed clause. The backtracking feature of Prolog allows this special

reclamation of space of a heap-like structure in a stack-like fashion.

The trail is used for storing bindings made during execution of a clause. When

that clause fails, all variables bound in that clause are reset to unbound, and the space used

to trail these bindings are recovered when the top of trail pointer is moved back to where

it was before the execution of the clause.

The WAM's multiple stack mechanism is also present in several other Prolog en­

gines [Yok84, CloSS, KTW*86]. For non-deterministic programs which perform extensive

backtracking, the WAM stack mechanism is extremely efficient, allocating and deallocating

space at minimal cost. A study by Touati and Hama [TH88] indicated that for some pro-

3.4. PARALLEL EXECUTION OF PROLOG 31

grams, the maximum stack space used is less than 10% of the total allocated space [TH88]

(figure 3. 3). Thus, over 90% is automatically reclaimed by the stack mechanism upon back­

tracking, without the need for garbage collection. For deterministic programs which rarely

backtrack, this automatic space reclamation is much less, but is still significant. In the best

case, the stack grows to a. maximum size of 48% of the allocated space. (In the worst case,

the stack grows to maximum size of 100% of the allocated space, thus requiring garbage

collection.)

Within this stack mechanism for sequential execution of Prolog, several tra.deoffs

can be ma.de tha.t affect memory space usage. One such tradeoff is structure sharing versus

structure copying. Under structure sharing, the compound term (a. Prolog structure), is

represented as a. pair of pointers (pointing to the code of the structure and an instance of

the binding environment) which are used to access structure value. Variables with same

structure value would contain the sa.me pointers, thus sharing tha.t structure value. Struc­

ture copying makes a. duplicate copy of the structure for ea.ch instance of the variable.

Structure sharing allows fast building of compound terms, but requires more time to access

them. Discussions of structure sharing versus structure copying and other details in memory

management for sequential implementations of Prolog can be found in [Mel82] and [Bru82].

3.4 Parallel Execution of Prolog

3.4.1 Memory Requirements

Prolog tasks (described in section 2.4) are potentially numerous since ea.ch task

is used for the traversal of a. small section of the execution tree. The number of tasks is

inversely proportional to the granularity (or size) of each task. This granularity is difficult

to control statically and ma.y be expensive to control dynamically. The tasks ma.y also ta.ke

up a. widely varying amount of memory space. Figures 2.4, 2.5, and 2.6 demonstrate this

potential variance. In figure 2.6, the AND-tasks and OR-tasks are of different sizes (in

terms of number of nodes in the tree).

Because of the support for non-determinism in Prolog, a. task needs to retain its

state for future backtracking. It also needs to preserve its da.ta. space if the va.ria.ble bindings

are passed by pointers to the da.ta. space and not by copying. This ma.y result in a. very large

number of tasks which ma.y never be executed again. Depending on how the da.ta space for

32 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

Figure 3.4: Tasks in Global Memory Space

the task is allocated, some address space could be tied up unnecessarily when it could be

used for spawning new tasks or for running existing tasks.

Figure 3.4 gives a conceptual view of tasks existing in memory, with each task

having a control block and an associated data space. To avoid the hlgh overhead of copying,

the tasks may share access to each other's task space via passed pointers. A global address

space is needed to efficiently implement this extensive sharing. The question at hand is:

How can the address space be adequately distributed among the tasks and globally managed

for efficient parallel execution of Prolog?

We are interested in obtaining a single-solution for a Prolog program, where the

OR nodes of the execution tree are partially traversed to obtain only one solution. This

is in contrast to all-solutions, where all nodes in the execution tree are always explored

for all possible answers. The memory management scheme should effectively support this

single-solution objective.

3.4. PARALLEL EXECUTION OF PROLOG 33

3.4.2 Scheduling Effects on Memory Behavior

Task scheduling is a very important factor in the resulting memory behavior. The

scheduler, either centralized or distributed, affects memory behavior in two ways:

• task execution order. The scheduler determines which task gets to execute first.

Since each task represents a different part of the overall execution tree, the order of

execution affects the spatial locality of the dataspaces of the tasks. From space recla­

mation viewpoint, it is desirable to have close together the dataspaces of AND-tasks in

closely related subtrees. From a parallel execution viewpoint, these dataspaces should

be far enough apart to not introduce any extraneous memory contention (different

cache block, different memory module).

• processor assignment. The scheduler decides which processor will execute a task.

From a cache performance viewpoint, tasks that share data should be executed in the

same processor. From parallel execution viewpoint, tasks that can execute in parallel

should be assigned to different processors.

Another issue with scheduling Prolog tasks is the management of potentially use­

less work. With AND-parallelism only, work done by sibling AND-tasks to the right of an

AND-task is potentially useless if that AND-task fails. With single solution OR-parallelism,

many OR-tasks may do useless work if their results do not affect the final solution. And

yet, these OR-tasks take up processing power as well as storage space. A good scheduler

should minimize the amount of useless work while maximizing the amount of parallelism.

Numerous parallel execution models have been proposed for Prolog [Con83, Her86,

Kal87, War87b, BSY88]. Some have been simulated while others have been implemented on

multiprocessors. From a memory management viewpoint, these models can be classified into

two categories: models for message based (non-shared memory) multicomputers and models

for shared memory multiprocessors. The next two sections will review a number of memory

management schemes previously proposed. The focus of this thesis is on shared memory

multiprocessors. Message based models are briefly covered for the sake of completeness.

3.4.3 Message-Based Models

A number of models for parallel execution of Prolog have been proposed for

message-based multicomputers. This section briefly reviews the memory management

34 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

scheme for each of these execution models.

"Closed Environment" in OPAL

The closed environment model [Con87] was developed for OR-parallelism in OPAL

(Oregon PArallel Logic), which is an implementationofthe AND/OR Process Model[Con83].

In this scheme, an activation frame for a clause is extended to contain a copy of the unbound

variables from the ancestor nodes. The parent frame is copied into the child process, and a

closing algorithm is applied to a frame to remove all links from a frame to ancestor frames.

All references can be resolved within the two frames used in unification.

"Closed Tuple" in the Reduce-OR Model

The Reduce-OR model [Kal87] performs a tuple closing to remove all references

outside of a frame. Unbound variables are duplicated, while ground terms may be shared.

Details of the two-phase unification algorithm is provided in [KRS88]. There are similar­

ities between this scheme and the closed environment scheme described above. A major

difference is that this memory model is designed for both AND- and OR-parallelism while

the closed environment model as described in [Con87] is suitable for OR-parallelism only.

The Reduce-OR model has been implemented on various shared memory multiprocessors

(Alliant FX/8, Encore Multimax, and Sequent Balance) and a message-based machine (In­

tel iPSC/2 hypercube) [SKR88]. In the shared memory systems, optimizations are made to

reduce the amount of copying.

Local Bindings in the Limited-OR/Restricted-AND Model

The Limited-OR/Restricted-AND Parallelism (LORAP) [BSY88] is another model

for both AND- and OR-parallelism designed for a distributed memory system. An emulation

of the LORAP abstract machine has been implemented on a network of Transputers with a

wrap-around mesh topology. The LORAP-abstract machine contains multiple processors,

each with its own local memory. Interprocessor communication is done by passing messages

over dedicated links between two processors. A number of processes are statically created

for each processor. A cell is created in the child process for each unbound variable in the

parent process, with links to the parent variable. A child may directly bind its own copy of

the variable. When passing back the results, the values of the bound variables in the child

process are unified into the parent process.

3.4. PARALLEL EXECUTION OF PROLOG 35

~ parent-child relationship

And-task H

And-task E
And-task 0

Or-task F Or-task G

Or-task B Or-task C

root task A

Figure 3.5: Conceptual View of a Cactus Stack

3.4.4 Shared Memory Models

As discussed in section 3.3.2, the stack is an efficient mechanism for reclaiming

memory upon backtracking. Many parallel models use an extended stack mechanism, called

the cactus stack, for parallel execution of Prolog. Figure 3.5 shows a conceptual view of the

cactus stack, which is a tree structure with a stack at each node. Execution begins with

the root stack. A new stack is created for each task spawned and is branched out from the

current stack. Depending on the model, execution on the parent stack can either suspend

or continue in parallel with execution on the child stack.

Implementation of a stack requires a segment of memory, a stack base pointer,

and a stack top pointer. In actual implementation, each branch of the conceptual cactus

stack may be an independent stack or several branches may share the same stack, since all

branches are not active during the same period of time. The WAM-based parallel execution

models designed for shared memory systems use three general types of memory models: a

stack set for each processor, a stack set for each task, and a stack set for one or more tasks.

In the first type, multiple tasks are allowed to share the same stack set, interleaving the data

space of each task onto the same stack set (as shown in figure 9.6). Execution models that

36 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

...... ---- -i -----i ----
task D

task H task F

task B
task E

task A task C

stock s~t stack s~t stack sa

I processor I I processor I I processor I

Figure 3.6: Stack Set per Processor Memory Model

use this memory model include RAP-WAM [Her86] and APEX [Lin88] for AND-parallelism,

and the SRI Model [War87b] and Aurora [LBD*88] for OR-parallelism. Aurora has been

implemented on both a single-bus shared memory system (Sequent Balance) [Sze89] and a

distributed shared memory system (Butterfly GPlOOO) [Mud89].

To prevent leaving holes2 in a stack and to ensure that the space of the executing

task is at the top of the stack, various ordering schemes are used in the scheduling of the

tasks for parallel execution at the cost of some restriction on parallelism (e.g., the various

steal rules described in [Bor84, Her86, Lin88]).

In a stack set for each task, the task space is independent of the processors (shown

in figure 3. 7), thus allowing for more flexible scheduling and a higher degree of parallelism.

For example, the PPP [Fag87] assign one stack set to each AND-task and each OR-task.

The entire stack set can be discarded when a task terminates.

The third type of memory model is a relaxation of the first type, allowing for

more stack sets than the number of processors. This relaxation has been shown to in­

crease the degree of parallelism, resulting in faster execution in APEX [Lin88]. Borgwardt's

model [Bor84] for AND-, OR-, and stream parallelism also falls under this category, allowing

the AND-tasks to share the stack set, while creating a new stack for each OR-task.

2 A hole is the spa.ce previously occupied by a task that has terminated but cannot be reclaimed since it
lies below the space of an a.ctive task.

3.4. PARALLEL EXECUTION OF PROLOG 37

Figure 3. 7: Stack Set per Task Memory Model

3.4.5 Or-Parallel Binding Environments

Or-parallelism introduces a special memory requirement. Sibling tasks that tra­

verse alternative OR-branches in parallel (called or-tasks [Fag87]) may attempt to bind the

same variable to different values, with one of them represent the current result and the

others represent alternative solutions. This binding must be stored such that it is not visi­

ble to sibling or-tasks, and is visible only to the parent's task when it is requested. In the

message-based models (section 3.4.3), each task makes the bindings in its own local space

and the results are copied back to the parent task when needed. In the shared memory mod­

els, various schemes have been proposed to solve the Or-parallel binding problem. These

schemes are discussed below. This section is intended to give the reader an overview of the

many possibilities. This covers the comparative studies by Crammond (Cra85], Ciepielewski

and Hausman [CH86] and Warren (War87a].

Binding List with Time Stamps

In Tinker and Lindstrom's [TL87] implementation of an Or-parallel Prolog on the

BBN Butterfly™, there is a binding heap in each processor. Time stamps are used for

38 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

chokepoints (to indicate the relative time of chokepoint creation) and for value cells (to

indicate relative time of binding), and are issued locally on each processor. Bindings for the

same variable are made in each processor's binding heap, but are linked together to form a

binding list. There is an "ancestor stack" on each processor to keep a history of computation

(e.g., processor 1 is an ancestor of processor 2), used to determine the appropriate value in

the binding list.

Advantages: Because time stamps are used to determine the appropriate binding

for the requesting processor, no unwinding upon failure is needed and thus no trail is kept

for the bindings. Task migration incurs low to medium overhead. Only the ancestor stack

and the information in the choicepoin t need to be copied to the new processor.

Disadvantages: Time stamps cost extra memory and time (but have uses in intel­

ligent backtracking and tracing for debugging) (MU86]. Dereferencing requires traversing

the binding list, which can be expensive. It is bounded by the smaller of the number of

processors and the number of bindings. Major drawback of the linked-list method is that

value cells on the binding heap that become unused cannot be recovered.

Hash Windows

Borgwardt's scheme (Bor84] creates a hash table (or window) in the global stack

of each Or-task. Each entry in the window contains an (address, value] pair. When a task

binds an unbound variable inherited from its parent, the value is stored in the hash window

at the hash address of the unbound variable in the parent's stack. Hash tables of parent

and child are linked into a linear list. When dereferencing, a task first looks into its own

hash table. If not found, it recursively searches up the chain to look in the parent's hash

window. Other execution model that also use hash windows include the PPP (Fag87], the

Argonne Model (SW87, War87a], and PEPSys (BdKH*88].

Advantages: Since hash chain contains only descendants of one another while the

binding list may contain bindings of siblings. Ancestor relationship is implicit in the hash

chain, no separate ancestor stack is needed as in binding list.

Disadvantages: There is extra. complexity involved in handling hash collisions and

hash window overflow. Furthermore, the length of the hash window chain is unbounded. To

reduce the access time, the Argonne Model has the concept of a. "favored" binding, where

each shared variable is associated with a processor. This processor may bind the variable in

place with a special bit to indicate that the binding is only relevant to the favored processor.

3.4. PARALLEL EXECUTION OF PROLOG 39

Unfavored bindings are stored in the hash window. The favored bindings may be accessed

in fast constant time. The Manchester-Argonne Model [War87a] proposes the merging of

parent and child hash windows when all except one Or-paths have been explored.

Variations: The hash window scheme contains many variations. First, all unbound

variables could be copied into the child's hash window, making the first dereference very

fast. Second, if a bound variable is found in the parent's hash window, it could be duplicated

in the child's hash window to save time on subsequent searches. Both of these techniques

increases the size of the hash window, and the amount of time saved depends on the access

frequency of the variable by that Or-task.

Variable Importation

In Lindstrom's variable importation scheme [Lin84], each task contains a local

variables vector. Unbound variables from the parent task are imported into the child's task

via an import mapping vector equal in size to the parent's variables vector, and additional

slots are created in the local variables vector to store bindings for the imported variables.

Upon termination of the child task, a new variables vector is created for the parent task,

with the previously imported unbound variables updated with new bindings and new slots

created for unbound variables in the child task. An export mapping vector is used to export

unbound variables from the child task to the parent's task.

Advantages: Dereferencing requires at most a two level search, in the local task or

the parent's task. Thus, memory accesses have high locality of reference, especially since

memory writes are done only on the local task.

Disadvantages: The algorithms to import and export variables are complex and

can be expensive.

Directory Tree

In the basic model of the directory tree proposed by Ciepielewski, Haridi and

Hausman [CH83, CH86], the binding environment of each task contains a directory pointing

to a set of context8 (activation records) containing the values. The address of each variable

is a triple: [directory address, context offset, variable offset]. When a clause is invoked,

a new context is created and its address is placed in the task directory. When a child

task is spawned, a new directory is created. The parent's directory is scanned. References

40 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

to contexts with no unbound variables (committed contexts) a.re duplicated in the child's

directory, thus allowing the child to sha.re the parent's contexts. Contexts with unbound

variables (uncommitted contexts) a.re copied into the child's local spa.ce.

Variations: There a.re a. number of va.ria.tions to the basic model. They a.re as

follows:

• Delayed context copying. The copying of uncommitted contexts can be delayed until

the context is first accessed. This avoids copying contexts tha.t are never used.

• Copy on read. When a. (committed or uncommitted) context is rea.d, it can be copied

into the local task to increase locality for future a.ccesses, incurring the extra. cost of

copying committed context.

• Directory tree. The copying of the entries in the parent's directory into the child's

directory is delayed. When first created, the child's directory conta.ins pointer to the

parent's directory. Using the local context strategy, the child's directory also gets the

reference of the most recently created context in the pa.rent's directory.

• Hashing on contexts. The directories are of a. fixed size and a. hash function is used to

enter context references into the directories.

• Hashing on variables. In this scheme, the values a.re stored directly in the directories,

as in Borgwardt's hash window scheme (previously described).

Ciepielewski and Hausman simulated the various combinations of the variations

described above for both a dance hall and a. distributed shared memory multiprocessors.

The general conclusion dra.wn by them is tha.t [CH86, pa.ge 254]:

"the stra.ightforwa.rd implementation [with delayed copy and no copy on rea.d] is

good when the search tree is shallow (chea.p process creation), distance between

branching point is large (the sa.me directory is used under several unifications),

many variables in the sa.me context a.re used (smaller copying overhead per

variable), and finally when contexts are small (small copying overhead)."

When the opposite conditions hold true, hashing on variables performs better than the

other variations.

Versions Vector

3.4. PARALLEL EXECUTION OF PROLOG 41

Hausman, Ciepelewski, and Haridi also proposed another storage model for Or­

parallel execution, called the Versions Vector model [HCH87]. In this model, a. vector of

size equal to the number of processors is created for each shared variable. To bind a. shared

variable, the processor puts the value in the appropriate slot of the versions vector and enter

the variable address into the trail stack. In one aspect, this scheme may be viewed as the

binding list of Tinker and Lindstrom's model combined into a vector form. However, the

versions vector WAM uses the trail instead of time stamps.

This scheme allows fast, constant time look up but requires more storage space

and expensive task switching. When a processor switches to a. different path of the search

tree, variables in the old path needs to be untrailed and variables on the new path need

to be installed. The paths are the segments from the old node and the new node up to a

common ancestor node. Two optimizations are made to reduce this task switch cost. First,

promotion copies the bindings in some version vectors to the original stack position. Sub­

sequent dereferences will find the variable bound in place. And second, delayed installation

postpones the installation of variables in the new path until they are accessed.

Binding Array

The Binding Array model, independently proposed by D.S. Warren [War84] and

D.H.D. Warren [War87b] 3 , allows fast access time a.t the cost of slower task switching time.

In this scheme, each task contains a binding list (called fonJJard list in [War84]). When a

variable in an ancestor's task is bound, the [address, value] pair is entered into the binding

list. Each processor contains a buffer, called the binding array, which contains all shared

variables (bound and unbound) along the path on which the processor is exploring. The

binding array is updated when new bindings are made or when the processor task switches

to a different path in the tree.

This model allows fast access to the variables at the cost of task switch time.

Whereas the Versions Vector model keeps one versions vector for each variable, this models

keeps one binding array of several variables for each processor. Thus this scheme has greater

locality and does not have the potential synchronization conflict which exists when several

processors attempt to bind the same variable. As in the Versions Vector model, the task

switch overhead can be reduced by keeping the task switching to adjacent nodes.

3 D.H.D. Wa.rren reportedly formulated the binding a.rray concept while at SRI in 1983, but did not
publish until much later.

42 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

3.5 Static Partitioning of Globally Shared Space

In the shared memory models described in section 3.4.4, there are a number of

stacks for each task or each group of tasks. A straightforward method of managing the

globally shared address space is static partitioning. The globally shared address space is

divided into equal partitions, one for each stack set. The space for each stack set is further

subdivided into space for each of the stacks. Thus the space of each stack is inversely

proportional to the number of stack sets. When this number is small, the space allocated

to each stack is sufficiently large that overflow would rarely occur. When the number of

stack sets is very large, the stack space is very small and thus the chance of stack overflow

is greatly increased. This is particularly true of the stack-set-per-task models, such as the

PPP Execution Model [Fag87]. In the PPP execution model, tens of thousands of tasks

may be spawned over the life time of the program to exploit the medium grain parallelism.

Many of these tasks will terminate, giving up their spaces for future tasks. However, many

others will go into the sleeping state, holding on to their execution state and data spaces

for potential future backtracking. These sleeping tasks accumulate over time, tying up

statically assigned but unused memory space that could be used to spawn new tasks. The

PPP execution model takes the simple approach of reverting to sequential execution when

no more space is available for spawning new tasks.

3.6 Solving the Problems of Static Partitioning

Three well known techniques may be used individually or together to reduce the

problems of static partitioning. While they are very useful for some situations, they each

have shortcomings of their own. This section discusses their advantages and disadvantages.

3.6.1 Virtual Memory

Extending the virtual memory space does not solve the problems of static parti­

tioning, although it can reduce the chance of overflow. The globally shared address space

can be extended up to the width of processor's memory address register and width of the

internal processor datapath (it would be too inefficient to require multiple cycles to transfer

pointer data). Mappings of virtual to real addresses are kept in page tables, and hardware

support is needed for address translations and for page table caching. Virtual memory in-

3.6. SOLVING THE PROBLEMS OF STATIC PARTITIONING 43

creases the complexity of processor, cache, and bus design. Larger virtual addresses require

a wider address bus (for virtual addressed caches) and greater bus bandwidth (for pointer

data), and this extra cost and complexity does contribute to performance. The virtual ad­

dress space, which is typically 32-bit in present technology, may even be insufficient when it

is divided for a very large number of tasks. Overflow may still occur in one partition when

its statically allocated space is exceeded.

Virtual memory is best for the cases where the actually used space is larger than

the available physical memory (and disk space is used to fill the gap), where access to

certain address spaces is restricted, or where usage of the virtual address space is very

sparse. The memory management problem described in this paper is quite different. The

space allocated for a stack does not actually get used until data is pushed onto the stack.

Much of the address space statically allocated to a task remains unused, but unavailable

for use by other tasks.

Segmentation techniques that use a segment register (or a segment table) to extend

the global address space do not extend the shared address space, since not all segments are

accessible at any given time, without reloading the segment base registers. For example,

the SPUR multiprocessor system [HEL*86] has a 32-bit process virtual address (PVA) and

a 40-bit global virtual address. The top two bits of the PVA are used as an index into a

4-entry segment table. Thus at any given time a process may access at most 4 segments.

3.6.2 Garbage Collection

Space containing inactive data which are no longer accessible may be reclaimed

by garbage collection. Various mark and compact techniques have been effectively used to

garbage collect the global stack of the WAM [PBW85, ACHS88, TH88]. However, parallel

garbage collection is very difficult to perform efficiently. Garbage collectors for parallel

systems generally fall into two categories [Zor89]: on-the-fly and stop-and-copy. On-the­

fly garbage collection algorithms allow collector processes and user processes to execute

concurrently, while stop-and-copy algorithms suspend all processors during collection. The

disadvantage of on-the-:fty collection is that collector and user processes must be carefully

synchronized for correct execution. In the simplest but slowest stop-and-copy scheme,

garbage collection is performed by only one processor. In the faster schemes, garbage col­

lection is performed by several processors running in parallel. In any case, garbage collection

44 CHAPTER 3. MEMORY MANAGEMENT: ISSUES AND PAST SOLUTIONS

does not completely solve the space allocation problem. If the statically partitioned task

space containing valid data is exceeded, it can not be further compacted. Furthermore, if a

task terminates in the near future, its entire space can be quickly discarded. In this case,

the time spent to garbage collect before the task terminates can be saved by obtaining new

free space and delaying garbage collection until no more free space is available.

3.6.3 Copy When Overflow

When a stack overflows, a larger area of free space may be used to copy over the

old stack. The complexity and cost of this operation are similar to those of parallel garbage

collection, since the pointer data must be updated to point to new addresses. Furthermore,

copy-when-overflow does not deal with the underflow problem. When the stack usage

shrinks, the unused space on top of the stack remains allocated to that stack.

3.6.4 Dynamic Allocation

Dynamic allocation may be used in place of static partitioning to adapt to the

changing memory requirements of the tasks. In some cases, it may stand alone as the

memory management technique for parallel execution. It may also be integrated with one

or more of the three techniques described above for more complete memory management. In

the next chapter, we will describe a scheme for dynamic allocation and deallocation which

allows for more efficient sharing of the global address space.

3. 7 Chapter Summary

In general, memory management has two aspects: space and time. Sufficient

space must be allocated to where it is needed and reclaimed when it becomes unused. The

allocation, deallocation, and data access times should also be minimized. For sequential

execution of Prolog, the stack structure is an efficient memory management mechanism

because space can be quickly reclaimed upon backtracking. For parallel execution, the

cactus stack is a conceptual memory model that allows parallel tasks to share data with

their ancestors. Each branch of the cactus stack is the local data space of a task. (A global

address space can efficiently support the sharing of data among the medium grain, parallel

tasks.)

3. 7. CHAPTER SUMMARY 45

In actual implementation, tasks executing in the same processor may share a com­

mon stack, or each task may have its own stack. The first scheme restricts parallelism for

more efficient reclaiming of space, while the second scheme has a serious problem with space

allocation. As the number of stacks increase, the stacks are much more likely to overflow as

the shared space is partitioned into smaller segments (under static partitioning). Various

techniques may be used to reduce this problem. They include: virtual memory, segmen­

tation, garbage collection, and copy when overflow. The advantages and disadvantages

of these techniques were discussed in section 3.5. In the next chapter, we will present a

dynamic allocation scheme that allows for efficient sharing of the global address space.

46

Chapter 4

ELPS: The Explicitly Linked

Paging Stack

4.1 General Model

The schemes previously described maintain a contiguous address space for each

stack. An alternative would be to allocate address space in small ranges as needed, and link­

ing these segments to form a conceptual stack. This chapter presents such a scheme, called

ELPS (Explicitly Linked Paging Stack), which is basically a heap management mechanism

adapted to provide dynamically sized stacks.

The concept of linked segments of memory is a classic one. Operating systems

manage pools of free pages to be allocated to user processes. Support libraries for the

C programming language contain memory allocation/deallocation functions for storage of

dynamic data. One important distinction is that in these memory management support,

allocation and deallocation of space must be explicitly requested by the programmer. ELPS

provides automatic (implicit) memory management support for stacks in a parallel execution

environment.

4.1.1 Page Partitioning

In ELPS, the globally shared address space is divided into many small (thousands

of words) chunks of equal size, called pages. Since it is difficult to determine at compile

time (or task creation time) how much space a task will need, equal sized chunks are

4.1. GENERAL MODEL 47

free page list

{·-········=···········:········- .. ,
·. . .. ···

local stack global stack trail stack

(a) Fix-sized stacks (b) ELPS variable-sized stacks

Figure 4.1: Fix-sized versus ELPS Variable-sized Stacks

adequate and require less bookkeeping than variable sized chunks. Each task may need one

or more stacks. Initially, one page is allocated to each stack. The use of the stack occurs

in the usual fashion, with the top of stack pointer being modified at each push or pop

operation. As the stack overflows, additional pages are allocated and linked with existing

pages. As the stacks underflows into a page below, the page on top can be unlinked and put

back into the free-page-list. In virtual memory, the mapping of a contiguous virtual space

onto discontiguous physical pages is implicit in that a hardware mechanism automatically

translates every virtual address into a physical one. The ELPS links are explicit in that no

address translation is required. If it is implemented on top of virtual memory, then the links

are virtual addresses. If there is no virtual memory, then the links are physical addresses.

4.1.2 Link Management

Figure 4.1 compares fix-sized stacks with ELPS variable-sized stacks. The free

pages are linked together in the free-page-list. A processor requesting for a free page must

lock the head of the list. To reduce contention for the lock, one free-page-list may be kept for

each processor and a processor may be allowed to pick up a page from another processor's

48 CHAPTER 4. ELPS: THE EXPLICITLY LINKED PAGING STACK

free-page-list. Each page has two links, pointing to the page above and the page below it in

the stack. Each page may also contain additional information regarding the page, such as

page size or relative ordering of pages in a stack. The links and information fields may be

stored separately in the page itself or combined together in a table. Figure ~ .! shows two

possible implementations. In both implementations, an address consists of two parts: the

page number p and an offset to the data area d. In the first implementation (figure 4.2(a)),

the links are stored together with the data in ea~h page. In the second implementation

(figure 4.2(b)), the links are collected in a central table, separate from data storage. An

indexing scheme is needed to access the link table. We choose to implement the first scheme

for the following reasons:

• Since the links for each page are accessed only by the owner task, distributed link

storage allow interference free access to the links by parallel tasks, while centralized

storage introduce unnecessary contention on the link table.

• Having the links together with the data would provide better cache performance. A

task that accesses data at the bottom of a page is more likely to be the owner of that

page, and thus would also need to access the links for that page. On the other hand,

the centralized scheme would require the links of each page to be stored in a separate

cache blocks to avoid extraneous contention on the cache block, thus wasting much of

the space in each cache block.

4.2 Possible Implementations

There are three facets to the implementation of ELPS: (1) overflow and underflow

detection, (2) overflow and underflow handling, and (3) data access. This section discusses

the tradeoffs among the different possible implementations.

4.2.1 Overflow and Underflow Detection

Detection may be done purely in software or with hardware support. Software

detection requires checking the value of the top of stack pointer after it is updated, but

before any data is written into the stack. Should overflow (or underflow) occur, a simple

subroutine call can be used to activate the overflow (or underflow) handler. The time cost

of software detection depends on the frequency of the updates to the top of stack pointer.

4.2. POSSIBLE IMPLEMENTATIONS 49

data area

page 1

into fields ---------
--~~'!_k ___
downlink UnkTable

page1 data area ... into fields
I ---------I •• I!P..~f!.k ___

data area down link

into fields
pageO ---------

__ I!P..~f!.k ___

into fields --------- pageO data area downlink

-- ~P.. ~'!_k ___
downlink

(a) (b)

Figure 4.2: Two Link Storage Schemes for ELPS

Hardware support can be used to monitor access to a stack area or changes to

the stack pointer. A special memory area may be designed to cause a trap to the overflow

handler when it is written into. The PSI-II architecture (NN87] supports such a scheme,

designating a part of memory at the top of the stack as the gray page. H all writes are

restricted to the top of the stack, a write to outside the current page may be detected for

underflow (locations above the top of the stack are not valid). In the WAM model, writes

may occur to the middle of stack (e.g., variable bindings), and thus the gray page scheme

can not handle underflow.

An alternative is to constantly monitor the value of the top of stack pointer, and

generate a trap when it falls outside of the page. However, this can only work when the

stack pointer is changed before new data is put into it. Depending on when the overflow

signal becomes active, the system must be able to undo the stack operation that cause the

overflow, and repeat it after a new page has been added to the stack and the top of stack

pointer adjusted to point to the new page.

50 CHAPTER 4. ELPS: THE EXPLICITLY LINKED PAGING STACK

4.2.2 Overflow and Underflow Handling

Overflow handling involves requesting a page from the free-page-list and linking

it to the existing pages. The top of stack pointer is updated to point to the bottom of

the data area of the new page. Allocation of new pages may be done on demand (when

the overflow occurs) or before the overflow can occur. On-demand allocation is simpler to

implement and is as good or better than pre-allocation, considering the relatively low cost

of overflow handling in ELPS and dynamic nature of stack space usage.

Underflow handling involves unlinking a page at the top of the stack and putting

it back into the free-page-list. Deallocation may be done immediately when underflow

occurs, or delayed until the free-page-list is empty (lazy deallocation). At this time, normal

execution are suspended and processing power is used to scan the stacks for free pages not

yet released. Lazy deallocation has the advantage that should the stack overflow again,

request for a new page is not needed.

4.2.3 Data Access

By not allowing contiguous data objects to cross a page boundary, accessing data

in an ELPS stack is identical to that of a contiguous stack. Contiguous objects such as

activation records and data structures can be accessed using a base address and the field

offset. The page size should be chosen to be much larger than the largest data structure.

A very large data structure must be broken into smaller nested structures, with pointers

from the main structure into the substructures. For linked objects such as lists, different

elements may be stored in different pages, connected together by the links.

4.2.4 Address Comparison

Address comparison is often done to decide the relative positions of two data

objects on the stack. H the pages in a stack are of arbitrary address ranges, it is not

meaningful to simply compare two addresses in different pages.

The simplest approach is to restrict the page allocation algorithm such that a

new page is selected only if it has a higher page address than the previous page of the

stack. Then address comparison can proceed as if the stack address space were contiguous,

since addresses across pages are monotonically increasing. This scheme increases the page

4.3. QUALITATIVE EVALUATION 51

allocation and deallocation time, since a page with a higher address must be searched for

in the free-page-list.

An alternative approach is to eliminate address comparison to allow the pages to

be in arbitrary order. This will be discussed in section 4.3.3.

4.3 Qualitative Evaluation

4.3.1 Advantages

The dynamic memory management style of ELPS has a number of advantages over

other schemes. They are:

• more efficient sharing of the global address space than static partitioning, reducing

the need for garbage collection.

• much less expensive overflow handling than copy-when-overflow.

• more efficient handling of underflow.

• much simpler hardware support than virtual memory and does not require address

translation which adds complexity to the cache system.

The heap style management may also be quite appropriate for garbage collection

[TH88]. Garbage collection typically involves copying valid data to a new section of memory,

and deallocating the old section which include invalid data. Due to the link structure in

ELPS, any free page can be readily obtained for copying data from pages in current use,

and pages in current use can easily be replaced by other pages.

4.3.2 Challenges

This heap-style management scheme introduces complexity which can potentially

affect performance. This section considers the challenges of the scheme, and discusses the

potential impact on performance. They are as follows:

• Ejjiciency of overflow/underflow checking. Without any hardware support, the ef­

ficiency of overflow /underflow checking depends largely on program behavior: the

frequency in which items are put on and removed from the stack. The type of hard­

ware support to be used depends on its effectiveness and implementation feasibility.

52 CHAPTER 4. ELPS: THE EXPLICITLY LINKED PAGING STACK

• Frequency of page crossing. Crossing a page boundary on an overflow takes additional

time to follow the link. It is expected that the page size is chosen to be large enough

such that overflow is infrequent. A potential problem would exist in the case where

stack storage and removal occur frequently at around a page boundary.

• Fragmentation. In ELPS, there are two types of internal fragmentation that can

occur. (Since the pages are of equal size and may be assigned to any task, there is no

external fragmentation.) The first type of internal fragmentation occurs at the end of

each non-top-most page, where some space is left unused because a contiguous data

object does not fit and must be placed on the next page. The second type occurs at

the end of the top-most page on the stack, the space is left unused when a task goes to

sleep. If the page size is properly chosen, the internal fragmentation can be minimized

and may be insignificant. Compared with static partitioning, internal fragmentation

of ELPS pages is much smaller than internal fragmentation of the fixed address range.

From that view, reduced fragmentation is the biggest advantage of ELPS.

• Elimination of address comparison. If the monotonic stack is too restrictive, the

pages may be allowed to be in arbitrary order. However, this requires that address

comparison be eliminated since comparing the address of data objects in different

pages of the same stack has no significance. The following section will describe how

it can be done for execution of Prolog.

4.3.3 Elimination of Address Comparison

If there is no address ordering among the pages, simple address comparison can

not be done to determine the relative positions of objects on the same stack but in different

pages. Therefore, address comparison should be eliminated. The following schemes may be

used to eliminate address comparison in the WAM:

1. Separate Environment and Choicepoint Stacks

If the control stack is used to store both environments and chokepoints, E points

to the topmost environment, whereas B points to the topmost choicepoint. When

new space is allocated on top of the stack, the two pointers are compared to find

the top of the stack. By separating the environment stack and the chokepoint stack,

each stack has its own top of stack pointer, and thus the comparison is no longer

4.3. QUALITATIVE EVALUATION 53

needed. Separating the stacks also allows some environment space to be recovered,

and enhances efficiency of garbage collection [TH88]. Under static partitioning, having

an extra stack increases the chance of overflow because the shared space has to be

further divided. This is not a problem under ELPS, because ELPS can support

millions more stacks.

2. Trail All Bindings

When binding an unbound variable, the variable address is compared with stack

markers. If the variable is below B, the pointer to the last chokepoint on the stack,

or below HB, the pointer to the heap, then the binding must be trailed. We propose

two alternatives to the usual address comparison:

(a) trail all bindings, thus eliminating the need for comparison;

(b) if the addresses are on the same page, compare and trail only if variable lies

below the pointer; otherwise, trail any way.

Trailing all bindings can potentially double the amount of trailing [TD87], but sig­

nificant saving is obtained by avoiding the address comparison. The time saving is

significant when the address space is contiguous, and is even more significant when the

address space is discontiguous. Alternative (b) provides a partial check for trailing,

and reduces the number of trailings. Since trailing takes up only about 5% of total

execution time, trailing all bindings for the sake of simplicity may be a good tradeoff.

3. Put All Variables on Heap

A variable that is allocated on the stack is potentially unsafe since the environment

trimming and tail recursion optimization may deallocate the variable location, re­

sulting in a dangling reference. A put_unsafe_value instruction is used to copy this

variable onto the heap, making the variable safe. In the current scheme, a variable

may reside on either the heap or the stack, and thus a pointer comparison is made

to :find out where a variable is located. We propose that all variables be put on the

heap, eliminating the need for this comparison. Dereferencing a permanent variable

requires an extra level of indirection, but time and complexity are reduced since no

comparison is need to determine where the variable resides.

Standard order builtins, such as Cl<, use address comparison to determine the order of

creation of two unbound variables. In such cases, either the monotonicity of the pages must

54 CHAPTER 4. ELPS: THE EXPLICITLY LINKED PAGING STACK

be maintained, or a tag must be kept for the relative order of the pages in a stack.

4.4 Chapter Summary

In this chapter, we have presented ELPS, a hybrid heap-stack storage model for

parallel execution on shared memory multiprocessors. At the global address level, the space

is organized into a heap, which is a linked list of pages. At the local task space level, the

pages are used to form logical stacks. The issues of page link storage, overflow/ overflow

detection, overflow /underflow handling, and data access have been discussed with some

proposed solutions. A qualitative evaluation points out the promising features of ELPS as

well as the challenges that needs to be overcome for efficient implementation.

In the following chapter, we will describe the multiprocessor simulation system

used to evaluate ELPS. Details of the implementation of ELPS on the simulated multipro­

cessor will also be provided.

55

Chapter 5

NuSim: A Multiprocessor System

Simulator

In the previous chapter, we described a hybrid heap-stack scheme for dynamic

allocation of memory. In this chapter, we present the simulation methodology used to

evaluate the proposed memory management scheme.

5.1 Introduction

Due to the numerous and intricate details involved in the operation of a computer

system, simulation is an essential and effective approach in understanding and verifying

theoretical models and architecture designs before they are built. There are many simulation

methodologies, which differ in the level of details being simulated.

We have built a simulation system (called NuSim) to facilitate our studies of mem­

ory management for parallel execution on shared memory multiprocessors. This simulator

framework allows for the complete system simulation: from the instruction set level to the

memory architecture level with caches and communication protocols. The key feature of

this simulator framework is flexibility, which allows for extensive instrumentation and con­

tinual updates and changes. The modular design identifies main features of the execution

model and the architectures being simulated as cleanly separated modules with clearly de­

fined interfaces. This allows for easy modifications to the individual modules to support

new execution models and architectures.

Currently, the simulator supports the PPP Execution Model [Fag87], which ex-

56 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

ploits AND fOR parallelism in Prolog programs, and a Multi memory architecture [Bel85],

multiple coherent caches on a single bus. The long term goal is to provide a flexible simula­

tion environment where extensions to the execution model and the architecture can easily

be incorporated, by modifying existing modules or replacing them with new ones. For

example, the Aquarius II architecture ([DS88, Appendix 3] and [NS88]) and the multiple

bus multiprocessor architecture [Car89] may be simulated using NuSim, with the appropri­

ate replacement modules. The complete listing of NuSim code is available as a technical

report [Ngu90].

5.2 Simulator Design Goals

The design goals for this simulator are:

1. modularity

The simulator framework designed to be as modular as possible, with clean separation

of the modules dealing with different features of the execution model and the archi­

tecture. This also allows easy modifications to the architecture and/or the execution

model.

2. simulation time efficiency

Simulation is inherently time consuming, thus it should take as little time as possible

to simulate the model and the architecture running a benchmark. Simulation of a

multiprocessor system on a sequential host can be several orders of magnitude worse

than actual run time of the multiprocessor target.

3. simulation space efficiency

The simulator should take up as little space as possible at run time, both the code

space and the data space. Byte code is used for more realistic architecture simulation

(taking into account code as well as data accesses) and also for greater space efficiency.

4. good programming practice

Strict programming discipline is used in coding. Separate modules are isolated in

different files, with local and exported functions explicitly declared (the default all

global style of C is not used). This is important in catching bugs at an early stage,

making the code easily understandable to others and safely modifiable (by data hid-

5.3. SIMULATION SYSTEM OVERVIEW 57

ing). Macros are used where appropriate to increase code legibility and high level

understanding, to reduce repetition, and to make fast and reliable changes possible.

For example:

ldefine X_FIELD 5

ldefine PR_STAT(a,b) fprintf(fp, "A • Y,5d B • Y.7.1fY.Y.", a, b)

LFIELD is more logical than 5. PR..STAT may be reused many times, reducing the

amount of code text, and the print format change can easily be made at only one

place.

5. portability

The simulator is written in fairly portable C code, with the exception of the assembly

language routine for coroutining, and a few system dependent operating system calls

(needed for resource usage monitoring ofthe host machine). It was developed on a Sun

3/50 (MC68020) running 4.3 BSD Unix™. It has been ported to the VAX/785 and

VAX/8600 (running 4.3 BSD Unix™) and an Intel 386 personal computer (running

System V Unix™). It should also be portable to other 32-bit machines. Porting to

non-Unix machines require some changes to the system calls.

5.3 Simulation System Overview

5.3.1 Program Transformation

A Prolog benchmark goes through several stages of transformation before it gets

to run on the simulator. Figure 5.1 shows these steps. First, the Prolog benchmark gets

annotated by the programmer for parallel execution (static scheduling approach). This

programmer's annotation can be assisted by use of the Static Data Dependency Analysis

program (SDDA) [Cha85, Cit88]. Some work has been done by Bitar [Bit89a] to automati­

cally annotate Prolog programs, using data dependency information obtained from SDDA.

Second, this annotated Prolog program gets compiled by the PLM compiler [VR84]. The

PLM compiler is capable of accepting annotations for AND-parallelism (e.g., a :- b t c)

and OR-parallelism (e.g., orpar(a)). The compiler transforms the annotated Prolog code

into PPP assembly language code. The simulator directly loads in assembly code, then

58 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

activates the assembler to assemble it into a byte code stream and to generate a symbol

table. The assembler is integrated with the main simulation engine to eliminate the need

to write out the symbol table to a file and to re-load it in for execution.

Prolo co~

Programmer's
annotation

anrwtoUd Prolog coth

1-~ .. 1
PPP assembly c~

Figure 5.1: Program Transformation

The following is an example of the program transformation.

Prolog program:

main·- a(X), b(Y).

a(X) :­
a(X) :-

b(X) :-

Annotated program:

:- option(par, orpar(a/1)).

main·- a(X) t b(Y).

a(X) ·­
a(X) ·-

X OR parallelism annotation

Y. AND parallelism annotation

•
~

5.3. SIMULATION SYSTEM OVERVIEW

b(X) :- ...

Compiled PLM assembly code:

procedure main/0
i_allocate 2,_1_206,_1_206,0
put_variable X1,X1
call_p a/1,1,1
put_variable X1,X1
call_p b/1,2,1
wait 1
deallocate
proceed

_1_206: 2
0

procedure a/1
try_me_else_p _2_776

proceed
_2_776: trust_me_else_p fail

proceed

procedure b/1

proceed

5.3.2 Design Considerations

X AND-fork procedure , a•

X AND-fork procedure 'b'
X join

X Join table

X OR-fork 1st clause •a•

X OR-fork 2nd clause •a•

59

In designing a new simulation system, we had considered a wide variety of op­

tions. Our chosen simulator design and implementation methodology is a compromise of

the various options to be most suitable to the goals described in section 5.2. We prefer

detailed simulation of the complete system architecture over trace simulation and stochas­

tic modeling to obtain more accurate measurements on system memory performance. We

chose an event driven simulation approach over a cycle by cycle simulation mainly because

it has been proven to be quite successful with previous multiprocessor simulation efforts.

SIMON [Fuj83a, Fuj83b] is a simulator for multicomputer networks and Multisim [CHN88]

is a simulator for single bus cache coherency protocol. We also believe that the event driven

approach allows for a more modular and hierarchical design.

60 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

Figure 5.2: NuSim Simulator Framework

We chose C as the implementation language over the specialized languages such

as Endot ISP [End87] and GPSS [Scr74] for practical reasons: Cis fairly well understood,

flexible, portable, and efficient. It also allows for easy integration with existing modules of

simulators such as Multisim and SIMON, which were both coded in C.

5.4 Module Description

The simulator is basically an event driven simulation system, with memory accesses

as the events. The events are ordered by time stamps and access priority, according to the

network arbitration protocol.

Figure 5.2 shows an overview of the simulator, which consists of: the assem­

bler/loader, the command interface, the graphical interface, the main simulation engine,

and the memory system.

5.4.1 Assembler/Loader

The assembler/loader loads in the assembly language file, assembles it into a byte­

code stream, and stores the stream into the code space of the simulated memory. This

5.4. MODULE DESCRIPTION 61

module also builds a symbol table to be used during execution of the code.

5.4.2 Command Interface

The command interface allows for user interaction with the simulator. The user

commands can be entered interactively at a terminal, or collectively provided in a command

file which is read in and executed. This command interface is particularly useful for inter­

active debugging, which will be discussed in section 5.6 (Multi-level Debugging Facility).

5.4.3 Graphical Interface

The graphical interface provides a more user-friendly interactive environment for

debugging and observing the execution activities of the simulated multiprocessor system.

It may also be used to graphically display performance statistics. Section 5. 7 will provide

an extended description of xNuSim, a graphical interface for multiprocessor simulators.

5.4.4 Main Simulation Engine

The main simulation engine is composed of submodules which simulate the parallel

execution model on the processors. The submodules are: the processor, the task kernel, the

scheduler, and the memory manager.

Processor

The processor submodule contains routines to emulate the model processor, ex­

ecuting a specified instruction set. Currently, the VLSI-PLM [STN*88] instruction set is

supported by the processor module. All the PPP Execution Model instructions for parallel

execution (e.g., call~ and try~) are also supported. The width of the registers is 32-bit,

which includes 2 bits for tags.

Memory Manager

An efficient memory management scheme is needed to support the PPP execution

model, allowing efficient allocation and deallocation of memory space for the PPP's poten­

tially numerous tasks. The memory manager submodule implements the Explicitly Linked

Paging Stack (ELPS) memory management scheme described in the previous chapter. This

62 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

includes routines to service the page crossing upon stack overflow /underflow, and to man­

age the free-page-list. In the processor submodule, changes (increment/decrement) to a top

of stack pointer is constantly monitored for potential page crossing. This simulates the

boundary checking done by various software and hardware techniques. These operations

will be described in greater detail in section 5.9.

Task Kernel Module

The task kernel submodule represents the parallel execution model. Currently,

the PPP Execution Model [Fag87] is simulated. A task is a piece of work which may be

executed in parallel with other tasks. In the PPP execution model, there are two types of

tasks: AND-task and OR-task. In Fagin's thesis, these tasks are referred to as processes. To

differentiate a PPP light-weight (shared address space) process from a heavy-weight Unix

process, this entity is now called a task.

The task kernel submodule consists of routines to handle task creation, commu­

nication and termination. The PPP model supports independent AND parallelism, OR

parallelism, and semi-intelligent backtracking. The simulator currently does not support

semi-intelligent backtracking. Studies by Fagin indicate that few Prolog programs can

take advantage of semi-intelligent backtracking. Therefore, it is left out mainly to reduce

the complexity of the simulator and to focus on memory management for AND- and OR­

parallelism. Sequential execution stands to gain the most from semi-intelligent backtracking.

The PPP's task communication is implemented using shared memory, with each

task having a communication area. Figure 5.9 shows task A communicating with task B.

If the receiving task is executing in some processor, the sending processor writes into a

special memory location associated with the receiving processor, causing an interrupt on

the receiving processor (figure 5.9(a)). If task B is sleeping, the transaction will be put in

the communication area of its task control block, which will be noticed when the task gets

picked up by an idle processor (figure 5.9(b)).

The task kernel submodule also includes routines to manage the multiple binding

environments for OR-tasks. The current implementation supports the dynamic window

linking scheme for AND/OR parallel execution of the PPP Model. These routines include:

bind (to store data in these hashwindows), dereference (to retrieve data), and handler rou­

tines for success and failure (to link and unlink the window chain).

5.4. MODULE DESCRIPTION

'f

processor 1
running
task A

processor 1
communication area

processor 1
running
task A

(a)

processor 2
running
task B

interrupt

processor 2
communication area

processor 2
previously idle

loading task B

_! f load

-·1
I
I

processor 1 processor 2 I

communication area communication area I

I

.. _____ !'!!.f?:!l!.~fl~!.S!.C!!._qg_'!!!!!~'!~~~~~~-~l!.'!!!!!Y_. ____ j

~--------------------------------1
I I
I task control block I

J'

1\
I task B I ,.
I
I write ~ I

~ communication area I
I I MaznMemory l ________________________________ l

(b)

Figure 5.3: Task Communication

63

64 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

Scheduler

The scheduler manages the task pool and assign tasks to processors. For the PPP

Execution Model, all tasks get spawned as compiled, unless there is insufficient resource.

Currently, a naive scheduler allows an idle processor to randomly pick the next ready task

to run.

The scheduler operates on a set of queues. The current implementation has four

queues. The ready queue contains the tasks that are ready to be run. The sleeping queue

contains tasks that have succeeded and returned answer to its parent. A task must be

retained in sleeping state for the storage of its computed result, and for the state which

may be backtracked into at future time. The sleeping queue also contains parent tasks

that are waiting for responses from the children. The pending queue contains tasks that

are suspended due to an 1/0 request. To maintain standard Prolog semantics, these tasks

are not allowed to proceed until they become the leftmost child. Finally, the free queue

contains task table entries that are unused, available for the creation of new tasks.

5.4.5 Memory System

The memory system simulates the memory subsystem of the architecture which is

composed of: caches, interconnection network, and main memory. As shown in figure 5.2,

the interface to the main engine is through four memory access routines: read, write, lock,

and unlock. Lock and unlock provides the synchronization primitive needed to achieve

mutual exclusion.

Multisim [CHN88] is a simulator for a single bus multiprocessor with multiple

hardware coherent caches (figure 5 . ./). Three modules have been extracted from Multisim

and integrated into NuSim to provide a memory system for the new simulator: the event

manager, the cache module, and the memory module.

The et1ent manager contains routines to manage (insert and delete) the prioritized

event queue, simulating the single bus broadcast and arbitration protocol for the requests

coming from the caches. It also contains the system-dependent assembly language routines

save~tate () and restore....state (),which are called to switch among the processors being

simulated.

The cache module simulates the cache of a processor, responding to memory re­

quests coming from the processors. In case of a cache miss, the cache module sends out the

5.5. INSTRUMENTATION 65

M-msmory

Figure 5.4: The Multi Architecture

memory request onto the bus, and awaits response. The operations include cache lookups,

bus request, bus broadcast, cache busy wait, and other steps needed to implement the co­

herency protocol. Multisim implements Bitar's cache coherency protocol with the cache

lock state [BD86].

The simulated processor has a 32-bit internal datapath. Since 3 bits are used for

tags1 , there are 29 bits for storing data. The memory module of Multisim simulates the

multiprocessor's 29-bit word-addressable main memory. It uses a 2-level paging scheme

similar to that of virtual memory managed by the operating system. This paging scheme

allows the simulated architecture to access the entire 29-bit address range, while using a

much smaller percentage. Space is allocated only for simulated memory blocks which are

actually read or written by the simulated processor. This is an important feature since it

automatically manages the address space, and frees the programmer from the concern of

mapping the benchmark code and data spaces onto the limited available space allowed by

the operating system (4.3 BSD or System V Unix™) for each Unix process. C functions

calloc () and malloc () are used to obtain memory dynamically from the operating system.

5.5 Instrumentation

The major advantage of a simulation over an actual implementation is the ease

and flexibility of instrumentation. Software instrumentation in a simulator can be done

much easier than hardware instrumentation in an actual implementation. The main goal of

1 2 bits for the 4 main Prolog types (variable, constant, list, a.nd structure) a.nd 1 bit for the symbol table
entry subtype.

66 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

our simulation system is to be able to study the behavior of the parallel execution model

as well as the performance of the underlying architecture supporting the model.

With respect to the PPP parallel execution model, the simulator is instrumented

to record:

1. parallel execution overhead: task creation, termination and communication.

2. memory space usage and performance of memory management scheme (ELPS): max­

imum code and data space required and cost of allocation, deallocation, and redistri­

bution.

3. degree of sharing: frequency of accesses to shared data, and size of shared data.

With respect to the system architecture, the simulator is instrumented to measure:

1. processor performance: percentage of memory accesses versus internal operations.

2. cache hit ratio, as a function of cache size, block size, and associativity.

3. the effectiveness of the cache coherency protocol, as a function of the cache hit ratios,

number of cache updates, invalidations, and bus utilization.

4. the effectiveness of the synchronization primitives and the locking protocols, as a

function of the time for busy waits of locked objects.

Instrumentation is done by putting counters at appropriate places in the simulator

routines. The results are reported at the end of execution of a benchmark. For some

measurement such as lifetime of a task, the result will be reported as it becomes available.

The desired performance numbers, such as percentage of reads versus writes, are computed

from these counter values. The performance table generator accepts the counter values as

input, computes the desired performance numbers, and prints them in a table format. A

spread sheet program is also used in analyzing data and printing out tables.

The simulator itself was profiled to determine the routines where most of the CPU

time are spent. This information helps in optimizing the critical routines in speeding up

the simulation time. Currently, there are two different sets of assembly language routines

(save~tate() and restore...stateO) to perform the coroutine switch. One set copies a

portion of the C execution stack to a saved area. This technique works with DBX, the Unix

symbolic debugger, to allow debugging of the simulator. The second routine uses multiple

• i.

5.6. MULTI-LEVEL DEBUGGING FACILITY 67

stacks and swap the stack pointers for a coroutine switch. This gives 30% faster execution

but does not work with DBX. Fortunately, it does work with GDB, the GNU symbolic

debugger from the Free Software Foundation. The decision as to which set of routines to

use is made at compile time.

5.6 Multi-level Debugging Facility

NuSim contains an interactive debugger to help debug the simulated system as

well as the simulator itself. This debugger allows for setting various types of breakpoints at

the instruction level and for printing out special Prolog data structures such as choicepoints,

environments, and task table entry. With the appropriate settings, the NuSim debugger can

interact with a C language symbolic debugger (such as DBX or GDB) to allow multilevel

debugging of the execution model and the C source code (which represents the microcode

of the hardware engine). Please see NuSim User's Manual (appendix A) for a more detailed

explanation of the interaction.

The following three figures provide a "feel" for the multi-level debugging capability

of NuSim. First, figure 5.5 shows a sample run of the simulator with the NuSim debugger.

After the compiled Prolog program has been loaded, ml shows the memory layout of the

target multiprocessor's memory, and code shows a listing of the program, and bp sets a

breakpoint at a specified code address. Simulation is then started by run, and the debugger

prompt appears when the breakpoint is reached. ps shows the processor state (register

values) of the specified processor.

Figure 5.6 shows how debugging can be accomplished at the C language symbolic

level. GDB is the symbolic debugger used in the illustration. And thirdly, figure 5.7 shows

multilevel debugging with both the NuSim debugger and GDB.

In addition to the basic status checks and breakpoint capability, other debugging

commands are added as necessary. A menu system with table driven input is set up to

allow easy addition of new debugging commands. The main goal in debugging support

is to minimize the user input, letting the debugger do most of the work, and to keep the

outputs at a logical, abstract level. Hiding much of the detailed information makes it easier

to understand the status of the execution. For example, print topmost choicepoint is

used instead of print choicepoint starting at <addr> since the first is more logical,

and does more work (it must first check for the top of choicepoint stack pointer).

68 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

UIIX> nusim Benchmarks/Misc/con1.w

***** JuSim ----- SUI Version 1.2 ----- July 8, 1989 (tast coroutine)

File '/hprg/luSim/Benchmarks/Misc/con1.w' loaded [Ox3820-0x3872].

Type 'h' tor help.

--luSim:DBG> ml

*** MEMORY LAYOUT [Ox1000 - Ox1ttttttt] ***
FTQ base/head/tail Ox1020/0x3t/Ox0

Task Table base Ox1120

S/A-Heap base Ox1b20

Code start/end Ox3820/0x3872

Code size 83 words

DataSpace start Ox3880

Task Data size 8388381 words

Heap ratio 0.40

Window size 128 worda

--luSim:TOP> code Ox3820 Ox382S

Ox

Ox

Ox

3820: put_list

3822: unity_constant

3824: unity_variable_x

--luSim:TOP> bp Ox3824 b

Breakpoint Ox3824 set!

--luSim:TOP> run

10

a

13

(PO TO) • Ox3824 unity_variable_x 13

--luSim:DBG> ps 0

proc #0 executing task #0 at time 380 -- timer = 0, ctlow = FORWARD

P: 3826 CP: 0 E: 0 B: 336baS

TR: 80379c

TS: S9d1&0

AO: 3900

A4: 0

tO: 0

t4: 0

--luSim:DBG>

B: 3901 liB: 3900 S:

oP: 3824 cut: 0 aode:

U: 0 !2: 0 !3:

AS: 0 !6: 0 !7:

t1: 0 t2: 0 t3:

tS: 0 t6: 0 t7:

Figure 5.5: Simulation Run with NuSim Debugger

3900

write

0

0

0

0

5.6. MULTI-LEVEL DEBUGGING FACILITY

UIIX> gdb nus im

GDB 2.7, Copyright (C) 1988 Free Software Foundation, Inc.

Reading symbol data from nusim ... done.

(gdb) break init_sim

Breakpoint 1 at Ox13dea: file init_sim.c, line 46.

(gdb) run -d Benchmarks/Misc/con1.v

Starting program: nusim -d Benchmarks/Misc/con1.v

••••• luSim ----- SUI Version 1.2 ----- July 8, 1989 (fast coroutine)

Bpt 1, init_sim (pid=O) (init_sim.c line 46)

46 if (!(reqs[pid] = (MEM_EVEIT •) malloc(sizeof(MEM_EVEIT))))

(gdb) info break

Breakpoints:

lum Enb Address Where

#1 y Ox00013dea in init_sim (init_sim.c line 46)

(gdb) delete 1

(gdb) next

49 if (!(proca[pid] = (PROC_STATE •) malloc(sizeof(PROC_STATE))))

(gdb) cont

Continuing.

File '/hprg/luSim/Benchmarks/Misc/con1.v' loaded [Ox3820-0x3872].

[a, b, c , d, e]

Top level query success

Exiting Simulator ... Simulated time: 1339 cycles

RUSiGE: 2.0u 0.7s 1388+4329+0k 6+1io 10pf+Ov

(gdb)

Figure 5.6: Simulation Run with GDB (C-language) Symbolic Debugger

69

70 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

UJIIX> gdb nusilll

GDB 2.7, Copyright (C) 1988 Free Software Foundation, Inc.

Reading symbol data from nusim ... done.

Breakpoint 1 at Ox1b4fe: file toplevel.c, line 124.

***** luSim ----- SUI Version 1.2 ----- July 8, 1989 (fast coroutine)

File '/hprg/luSim/Benchmarks/Mi•c/con1.v' loaded [Ox3820-0x3872].

Type 'h' for help.

--NuSim:TOP> bp concat/3 b

Breakpoint concat/3:0x3852 set!

--NuSim:TOP> run

(PO TO) • concat/3: Ox3852 svitch_on_term _2_719, _2_720, fail

(PO TO) (884) Call: concat([a,b,c],[d,e],_59d1a0)

--NuSim:DBG> dbx

Bpt 1, dbx_break () (toplevel.c line 124)

124 }

(gdb) break svitch_on_term

Breakpoint 5 at Oxd1f2: file /vlsi2/tam/luSim/Source/Proc/index.c, line 21.

(gdb) c

Continuing.

--l'iuSim:DBG> c

Bpt 5, switch_on_term (pid=O) (/vlsi2/tam/JuSilii/Source/Proc/index.c line 23)

23 DECLARE_proc;

(gdb) next

25 T(O) = dereference(pid, A(O));

(gdb) n

26 switch(TAG(T(O))) {

(gdb) ndb

--luSim:DBG> env 0

Sequential environment (base = 59d1a5)

E: 0

YO: 8059d1a0

--luSim:DBG> c

(gdb)

CP:

Y1:

0

0

8:

Y2:

336ba5

0 Y3: 0

Figure 5.7: Multi-level Debugging with NuSim Debugger and GDB

5. 7. XNUSIM: A GRAPHICAL INTERFACE FOR MULTIPROCESSOR SIMULATORS71

5.7 xNuSim: A Graphical Interface for Multiprocessor Sim­

ulators

A graphical interface can greatly enhance the ease of use of a simulator, and make it

easier to monitor the various activities of the simulated architecture. A graphical interface

can also be used to report performance results. The process of displaying intermediate

simulation data is also known as animation in simulation terminology [Sar88].

A graphical interface for multiprocessor simulators has been developed and inte­

grated with NuSim. It runs under the X11 Window System and is thus called xNuSim [Pan89]).

This graphical debugging environment is modeled after DUES [Wei88], the graphical inter­

face to the sequential VLSI-PLM simulator. xNuSim provides multiple windows for viewing

of code, execution output, processors' status, and memory contents. It enhances the ease

of use of the NuSim simulator.

The key feature of xNuSim is its loosely coupled interface with the NuSim simula­

tor, thus enabling it to be used with other simulators as well. xNuSim knows nothing about

the internal operations of NuSim and only communicate with NuSim via the NuSim's com­

mand interface (please see figure 5.2 and section 5.4.2). When the simulator is run without

xNuSim, commands are entered from keyboard and simulator outputs are shown on the

screen in text form. With xNuSim, commands may be entered either by use of the mouse

and pop-up menus, or by use of keyboard as before. xNuSim interprets the output of the

simulator to extract the relevant data used in the graphical display windows. To use xNuSim

with another simulator, only simple changes to the menu tables and command formats are

needed to customize xNuSim for that simulator. Figure 5.8 shows a sample setup of the

graphical interface.

For future work, additional features can be added to this graphical environment

to allow monitoring of parallel tasks and multiprocessor activities. A useful feature would

be to show the execution tree as time progresses. For example, the graphical environment

was implemented at the Argonne National Lab for their OR-parallel system [DL87]. This

graphical environment accepts execution traces as inputs and shows the changing of the

execution tree through time. Such a system for the PPP model would be quite useful in

understanding parallel execution and the effects of the scheduler.

===• PAOCEBBOR 0 =·==
I p : 3llr.l 1f c:P : "§fl7 I
I E : doll I : de21 IIUS.t.. S.iallator
ITR : 01994 H : bu 1 ~

unlfy__.llblo_x 111
IHI : 3bOO s : bOO I got_llot 111 Pm:ESSIJI

1--: or Ito wt : o I unify_- 18 !...._Table Processor<Ol unlfy__.llblo_x X1
leP QIOf I got_llot X1 TTE<o> Processor <1 l : J8f7 flO :

unify_- 4& ITE<ll Processor<2l IA1 o I unlfy__.llblo_x X1 : 0 R'l I
ITE<2l Procesoor <3 l

IAJ --
got_llot X1

: 0 ..,lfy_- IB TTE<Jl Processor (4 l •••:a TA8& 0 ==== unlfy__.llblo_x X1
Procesoor<S> got_llot 111 TTEW

I p : JII20 II c:P : o I f~~..- 11
TTE<5> Processor<6l,~~.. _. X1

I E : de2 II I : de2 got_llot X1 TTE<6>__.(7)
10olfy_-lil5 TR : 039!N II H : bOO ... tfy_-llble_x X1 TTE<7>

HI : 3bOO II s 0
got_llot X1

: ..,,fy_-2
wt : oil_..: reod ... tfy_-llblo_x X1

got_llot 111
ototo: 1.11111110 11 ... : nfff r~~.-- J2

"" : 3bOO II sm. : J3&de2
::!_ft.-::r·~·"-" X1

Tll.b : tb20 II,... : ffffff lloodiiStopl~l...._l(.........,tntll......_u .. IIConFtaiiRoootlf~•tl
port, : 0 II port: 0 <0.2>

co : t II a : 0 - Ul• --SUI~~ ... t.t -- IIIII 9, t9II!J (foot aroutiNl
ICC o 11 ,. Tp'h'F~. : : 0 ---til•: TIJ')

A1 : o II R'l : 0
Fllo ' .w· loedod 1~1.

---til•: TIJ') •
AJ : o I ---til•: TIP> ,..

<PO TOl o Odii20 ollcato Ox2
•••• PAOCEBBOR 1 z:=== <PO TOI (J22) fAll: Min

---tii•:IE> •
E : o II I : o I <PO TO> o o...!2 put_-llblo-11 n.•

o I ---til•: a;) I TR : 0 H : (PO TOl o OxJII2!I call gotllot/1
HI 0 s o I ---til•: J11G> I : : <PO TOl o Odld5 aot.llot JIO

--=
0 tO : o I ---tit•:IE> •

<PO TO) o Oo-.:5 ..,lfy_- Odb u : 0 R'l : o I ---tit•:.:> •
<PO TO> o Odld! ..,lfy__.tlblo_x JIO AJ : 0 •••• T .. 1 •••• ---til•:IE> •
<PO TOl o OdlltS aot.llot JIO ,. : OIICI' : o I ---tii•:JE> I
<PO TO> o Odlcd unlfy__.tlblo_x JIO E : 0 I : o I ---tii•:IE> •
<PO TOl o Oolldt unify_- OxU TR : 0 H : o I ---tii•:IE> • .. : 0 s : o I

wt : 0 flO : o I
A1 : 0 R'l : o I
AJ : 0

Figure 5.8: A Sample Setup of the xNuSt

Cllf'IGIR : I~ Ctlf' IGIR : fAit

l~·l confltl l~•t confl·l

IP •• (JI I IP Ia IFF I
lrP toOl! lrP •• IFF I
IE •• (JI IE •· (JI I
I• •• (JI I• lo 01 I
ITR •• (JI ITS •• IFF I
IH •• (JI ITR •· (JI I
IHI •• (JI IH •• (JI I
Is •• (JI IHI •• (JI I
lwt hOI Is •· (JI I
I~ Ia IFF 1-- •• (JI I
!•toto Ia IFF I lwt Ia IFF I
I~~> •• IFF I I I'll .. IFF I
llf'b Ia IFF I leP •• IFF I
Ism. •• IFF I I crt.. •• IFF I
ITII.b •• IFF I lu_. •• IFF I
lpor •• IFF I It -»I
I port, •• IFF I lA _.»I , •• IFF I
leo •• IFF I
let •• IFF I

I ICC II IFF I
lA _.»I

.p

...:!
1'..:1

(')

~
~

~
~

~ c::
~
~
;...
t(

~
~ ;g
0

~
til
0
~
tl)

~

i
~
~
;...
~
0
~

5.8. COMPATIBILITY AND EXTENDABILITY 73

5.8 Compatibility and Extendability

The simulator framework is designed to be compatible with many of the exist­

ing software packages, improving existing ideas and allowing for better integration. The

simulator framework is also designed to accommodate future changes with the least pos­

sible amount of programming effort. The following are some notes on compatibility and

extendability of the simulator framework:

1. The PLM Compiler with the latest support for PPP is used to generate PPP code

from a Prolog benchmark.

2. Due to removal of CDR-coding and split environment and chokepoint stack, the

semantics of a few instructions have been slightly altered. Thus some routines in the

library of builtins in VLSI-PLM instruction set would require rewriting, especially

those which contain a sequence of instructions to build up a list or structure. These

builtins are currently written in C code, as is the PLM instruction set, thus simulating

the builtins in microcode. These builtins may be written in VLSI-PLM code in the

future to simulate the builtins as software routines.

3. The simulator is fully compatible with the Multisim memory and cache module. Mul­

tisim has been incorporated into the new simulator. With the interface of the four

routines to read, write, lock, and unlock, a memory and cache module for another

memory architecture may replace the single bus hardware cache coherent system.

The simulator should also be compatible with other memory system simulators such

as SIMON [Fuj83a] which satisfy two requirements: that they employ event driven

methodology, and that they are coded inC (or object code compatible).

4. Ideally, it is desirable to have other processor modules to be compatible with the

PPP Task Kernel. Compatibility works best at a high level abstraction. For example,

push(H,X) is being used instead ofmemvrite(H++ ,X). This allows the push function to

increment or decrement the pointer appropriately, and the checking of page boundary

crossing can also be done in the push function.

5. The ELPS memory management module should be compatible with any instruction

set, since page crossing exceptions are handled at a low level below the instruction

set.

74 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

6. Any modification to the binding environments involve the basic routines, such as bind,

dereference, trail and also operations upon process creation, termination (success or

failure), and switching (success and wakeup).

7. There is at least one simple extension to the naive scheduler of the PPP: attach a

priority to each process and keep the ready tasks in priority queue or tree structure.

Idle processors can select the ready task with the highest priority. More extensive

changes to the model would require additional data structures for handling of the

parallel goals, and appropriate routines to manipulate them. Changes in the schedul­

ing scheme would affect task creation, termination, and switching.

5.9 Implementation of ELPS on the Simulated Multipro-

cess or

Two different techniques, one with hardware support and another entirely in soft­

ware, are used to implement ELPS on the simulated multiprocessor architecture. The

dataspace address range for all tasks is partitioned into small pages of a power of 2 size. A

small block of the lowest addressed words in each page is reserved for storing the links and

information regarding the page. Currently, the two lowest words are used to store the two

links.

5.9.1 Software Checking

In the software technique, overflow checking is done on the stack pointer each time

it is updated. The page_mask is a constant that used to obtain the page number. The

overflow checking algorithm is as follows:

new_ptr • stack_ptr + object_size;

current_page • stack_ptr t page_mask;

new_page • new_ptr t page_mask;

if (current_page != new_page) then

call overflow_handler();

When overflow occurs, the overflow handler is called to obtain a new page, link it with the

top page on the stack, and update the stack_ptr. This software check costs four cycles. It can

5.9. IMPLEMENTATION OF ELPS ON THE SIMULATED MULTIPROCESSOR 75

be reduced to two cycles if a register is designated to store the page boundary, containing

the highest address in the current page. One upper _page_limit register is needed for each

stack, and it is updated at the time of overflow. The checking is simplified to:

new_ptr • stack_ptr + object_size;

if (new_ptr > upper_page_limit) then

call overflow_handler();

To check for underflow, the stack pointer is compared against the boundary of the

link fields, stored at the bottom of a page. A link_mask is used to determine the boundary

of the link fields. The algorithm is similar to overflow. With a register reserved for the

lower_page_limit, underflow checking can be done in two cycles.

5.9.2 Hardware Support for Checking

With hardware support, overflow and underflow checking can be overlapped with

the stack push/pop operation, thus requiring no extra time. Two status signals are used

to indicate an overflow (or underflow) and causes a trap to the exception handler. The

outside current page signal indicates that the new stack pointer is outside of the previous

page, which may be an overflow or an underflow, and the inside link area signal indicates

that the new stack pointer is inside the link area, which is an underflow. Figure 5.9 shows

the hardware logic circuit, using a page mask, a link mask, and two comparators. The

hardware support for this check requires the delay of one additional AND-gate and one

OR-gate over a normal comparison. However, this should not lengthen the cycle time since

equality comparison is generally not in the critical path of ALU designs. The figure uses

the generalized case of the full word width. By fixing the page size or the link fields to a

certain range, full word (e.g., 32-bit) comparison is not needed, thus reducing the chip area

and comparison circuit delay in the processor. In the most general case, page mask and

link mask can be writeable special registers, allowing for the configuration of the page size

and the info associated with each page at the start of execution.

Page allocation is done on-demand at the time of overflow, and deallocation is done

lazily. For fast startup time, only a portion of the dataspace is partitioned into pages and

put into the free-page-list. The others are kept as uninitialized memory, and gets initialized

only when the free-page-list is empty. If the uninitialized memory is also empty, normal

76 CHAPTER 5. NUSIM: A MULTIPROCESSOR SYSTEM SIMULATOR

stack top pointer

lin/c mas/c

... 0

zero wtctor ----,

outside cwrenl page insiiU link. area

Figure 5.9: Hardware Support for Out-of-Page Check

outside current page - pageno(stack top pointer) 1= current page register

inside link area- pageoffset(stack top pointer) < linkbound(stack top pointer)

execution in all processors are suspended, and the stacks are scanned for free pages not yet

deallocated.

5.10 Chapter Summary

In this chapter, we describe a multiprocessor simulation system, called NuSim. It

is an event-driven simulator with memory accesses as events. The modules are designed

to simulate the processor, the memory system (including caches), and the interconnection

network. The simulator accepts a compiled Prolog program as input and outputs perfor­

mance evaluation statistics. The current implementation simulates a multi [Bel85], using

the cache lock state protocol [BD86] to keep the caches consistent. Debugging support for

the simulator includes a graphical interface, called xNuSim [Pan89], and a multi-level de­

bugger (for the instruction level and the register transfer or microcode level). The ELPS

memory management model is implemented on the simulated target multiprocessor using

two schemes: software only and hardware support. The check for page boundary overflow

costs two cycles for the software only scheme and require no extra time with hardware

5.10. CHAPTER SUMMARY 77

support.

78

Chapter 6

Simulator Validation

6.1 Introduction

Simulation can be an accurate and effective approach in predicting performance

of a new multiprocessor system, if the many intricate details in the hardware and software

designs are taken into account. The degree of accuracy depends on how much detail is

included in the simulator. To ensure that the simulator accurately reflects the system yet

to be built, the simulator must be carefully validated for correct functional as well as timing

results.

The validation process is carried out by comparing performance data from the

new simulator with known data obtained from previously validated sources. The validation

process itself can be quite tedious and difficult, with massive amounts of information that

need to be analyzed. In this chapter, we present our approach to validating the framework

and the processor module ofNuSim, described in the previous chapter. The process involves

sequential execution of benchmark programs on NuSim and a uniprocessor simulator, com­

paring results and performance data.

6.2 Validation Methodology

There are many approaches to the validation of a simulation model [Sar88]. The

concept of our approach to validation is quite simple: comparing new, unverified results

with previously known answers. The more difficult task is the careful consideration of

the many different factors that can affect the results and the degree of these effects. The

6.2. VALIDATION METHODOLOGY 79

validation process for a computer system simulator is best done in a stepwise fashion. The

exact details of the necessary steps depends on the availability of the known result, or the

basis, used for comparison.

For the rest of this thesis, the term host designates the machine on which the

simulator is run and target refers to the computer architecture/system being simulated.

Validation refers to the process of ensuring that the simulator is coded correctly and that

it accurately models the target.

In the initial phase, where a paper design is the only basis available, validation of

the simulator usually consists of:

1. Manually checking for correct coding according to the paper design.

2. Running the simulator and checking for functional correctness, comparing the results

with manually worked out solutions.

3. Manually checking the timing of sub-blocks in the simulator.

4. Running the simulator to obtain timing estimates.

5. Running simulator with instrumentation turned on to capture dynamic execution

statistics.

The term manually used above refers to the ad hoc approach of eyeballing (for

steps 1 and 3), hand calculations (step 2), or writing small, very special purpose software

tools to accomplish the tasks. This approach is tedious and error prone, but is often the

only possible way at this phase since a paper design is the only available basis. In step 5,

the monitor facility for instrumentation should not affect the timing.

Once the initial simulator is validated, it may be used as a basis for validating

other simulation systems. The validation process can now be done with a greater degree of

automation, and thus achieving greater efficiency. However, great care must still be taken

to understand the factors that cause discrepancies.

The validation process of a multiprocessor system 1 simulator involves the following

steps:

1The term multiproce$$Or -'!l$tem is used to include both the multiprocessor architecture and the parallel

execution model

80 CHAPTER 6. SIMULATOR VALIDATION

1. sequential execution on one processor. This is done to test the processor module of

the simulator and the relevant support modules such as assembler and loader.

2. parallel execution on one processor. This is a degenerate case, done to measure the

overhead of parallel execution.

3. parallel execution on two processors. This is a special case for testing interprocessor

communication with no interference since there is exactly one sender and one receiver.

4. parallel execution on three or more processors. This is the general case of parallel

execution, with potential for interference on shared resources such as the memory and

communication channels. It is also used to test the full extent of the parallel execution

model. As more processors are added to the configuration, the saturation of shared

resources will occur and bottlenecks will appear.

In this chapter, we present the application of the first step of validation of a

multiprocessor simulator, using a previously validated uniprocessor simulator as a basis

(this first step is the foundation for the other three steps: the simulation result of each of the

three steps is compared against the result of the first step). Since there are architecture and

execution model variations in the two simulators, their results are compared for proximity,

not for exact equality. The following sections provide details on the simulators and the

validation approach.

6.3 Simulator Descriptions

To validate N uSim, we use a previously validated simulator, called VPsim, as a

basis for comparison. Both simulators provide an abstract machine engine for fast execution

of the Prolog language. This section provide a description of VPsim and its similarity and

differences to N uSim.

6.3.1 VPsim

VPsim is a register transfer level simulator for the VLSI-PLM [Hol88, STN*88].

This chip is a VLSI implementation of a high performance engine for Prolog, a modified

version of the abstract machine proposed by Warren [War83]. VPsim is written in the C

6.3. SIMULATOR DESCRIPTIONS 81

language, consisting of 4500 lines of C code and 9000 lines of microcode operations (register

transfers, CPU operations and micro branches).

To verify VPsim 's functional correctness, a wide variety of Prolog programs was

run on VPsim and their results were compared with those obtained from runs on commercial

Prolog systems such as Quintus Prolog. Because VPsim is microcode driven, the microstates

automatically provide accurate timing, with each microstate being executed in exactly one

processor cycle. Gate and transistor level simulations of the VLSI-PLM chip are compared

against the results from VPsim. In the final stage, the chip is tested. It passes an extensive

testing process and successfully executes a number of benchmark programs.

From the perspective of our research, VPsim is a solid simulator that has been

well tested and has been verified by the hardware. It is an available resource that can be

used as a basis for testing other simulation systems.

6.3.2 Simulator Differences

Although both NuSim and VPsim essentially simulate the VLSI-PLM chip, they

were created for very different purposes. VPsim was designed as a simulator for a very

specific microarchitecture of a Prolog processor. Details of the VLSI-PLM microarchitecture

are "hard-wired" into the microcode, in terms of what micro-operations are possible and the

constraints in packing the micro-operations into a micro-state. On the other hand, NuSim

was conceived as a more general purpose multiprocessor simulator for system integration,

dealing at all levels from hardware architecture to software execution model. It will be used

to experiment with different architectures and execution model tradeoffs.

Because of the different goals in creating the simulators, there are a number of

differences between them. These differences are identified to help us understand the dif­

ferences in performance numbers. The following are some differences between VPsim and

NuSim (running sequential code):

• simulation level. VPsim is a register-transfer-level, cycle-by-cycle simulation, while

NuSim is a.n event driven simulator which steps by memory access. The clock of

VPsim is incremented each cycle, while the clock of NuSim is incremented by a value

obtained from table lookup plus the simulated memory access time.

• cdr-coding. VPsim uses cdr-coding, while NuSim does not. Cdr-coding is a com­

pressed representation for list elements stored in consecutive memory locations. It

82 CHAPTER 6. SIMULATOR VALIDATION

requires a bit to indicate if the next location is the car of the next element. Cdr­

coding is eliminated because its complexity has greatly complicated the microcode of

the VLSI-PLM while contributing little to the overall performance [TD87].

• instruction fetch. NuSim does instruction fetch on demand, and accounts time for

all fetches. VPsim does prefetching, which does not charge time for all fetches, but

may spend time to fetch unnecessarily.

• memory system. NuSim has a cache/memory system with realistic values for mem­

ory access time. It accounts time for cache misses and block transfers from memory.

VPsim has single (processor) cycle memory.

• Pro log built ins. VPsim treats some Prolog builtins (language predefined routines) as

external functions, and ships data outside the VLSI-PLM processor for processing by

the host. A varying amount of time is charged for the data shipment (3 to 10 cycles),

but no time is charged for executing the external function. VPsim also implements

some Prolog builtins in the library using VLSI-PLM assembly code. NuSim, on the

other hand, executes all Prolog builtins inside the processor, and charges time for

them as normal instructions. In NuSim, all builtins are written in C code.

6.4 The Validation of NuSim

In this section, we will compare the performance results of NuSim to those of VP­

sim to see how closely NuSim simulates a VLSI-PLM processor. Many benchmarks were

run on both NuSim and VPsim, and their execution outputs were compared for functional

correctness. A group of benchmarks was chosen for closer timing evaluation. These bench­

marks differ widely in static code size and dynamic memory usage and execution time.

We have identified a number of measurements for comparison. They are: static

code size, cycle count, simulation cost, operation count, and memory access count. Each

type of measurement provides a different perspective of the simulation results, helping to

understand the similarity and differences between the two simulators and at the same time

validating the results of NuSim.

6.4. THE VALIDATION OF NUSIM 83

Table 6.1: Benchmark Code Sizes and DescriEtions

lines of code
Benchmark NS VP NS/VP Description
bin tree 181 198 0.91 build a 6-node binary tree
chat 8018 8446 0.95 natural language parser
ckt4 468 370 1.27 circuit design for a mux2
compiler 11409 12488 0.91 PLM compiler (compiling bin tree)
hanoi 91 82 1.11 towers of hanoi for 8 disks
mumath 262 251 1.04 Hofstadter's mumath problem for muiiu
nrev1 164 109 1.50 naive reverse a 30-element list
palin25 290 259 1.12 palindrome for a 25-character string
puzzle 1158 1049 1.10 solve a puzzle
qs4 249 163 1.53 quicksort on 50 numbers
qs4..meta 487 397 1.23 Prolog meta interpreter running qs4
queens6 283 294 0.96 6-queens problem
query 520 520 1.00 search a simple database
reducer 2017 2020 1.00 a graph reducer for T-combinators
sdda 1663 1636 1.02 static data dependency analysis
tak 69 77 0.90 solves a recursively defined function

con1 50 46 1.09 concatenation of 3- and 2-element lists
con6 53 48 1.10 pairwise partition of a 5-element list
fibo 71 69 1.03 compute 5th fibonacci number

6.4.1 Static Code Size

Table 6.1 shows the descriptions and the static code sizes (in number of lines) for

the same benchmark compiled using different options for execution under NuSim (NS) and

VPsim (VP). The three smallest benchmarks (con1, con6, and fibo) are listed separately

at the bottom. The ratios NS/VP show that static NS code and VP code are for the most

part well within 10% of one another. The ones that show big variances are due to the lack

of cdr-coding in NuSim, which requires two instructions to build an element (car and cdr)

of a list. For example, nrev1 builds a list of 30 elements before reversing it and qs.f builds

a list of 50 elements before sorting it.

6.4.2 Cycle Count (Simulated Time)

The simulated cycles columns of Table 6.2 show the cycle count of VPsim and

the ratio of NuSim/VPsim cycles, respectively. The hit ratio column shows the cache

performance for NuSim configured to a 4-way associative, 64K byte cache with a block size

84 CHAPTER 6. SIMULATOR VALIDATION

of 16 bytes. From these columns, we observe that:

• Simulated time of NuSim is within 10% of that of VPsim (NS/VP simulated cycles

are approximately 1.00) for most large programs (chat, compiler, queens6, reducer,

and tak). One exception is ckt4, which is 14% slower under NuSim. This is due

to differences in the implementation of instruction fetch. This will be explained in

section 6.4.5.

• NuSim cycle count is significantly worse than VPsim in the small programs due to

low hit ratio (cache cold start). For example, conl, con6, and fibo have the lowest hit

ratios among the benchmarks, measuring at 88.7%, 95.7%, and 95.6%, respectively.

• For two programs (puzzle and query), the simulated time on NuSim is much less than

that on VPsim. This is because these programs make extensive use of indexing on

a term or a constant, multiplication, and division. VPsim performs these operations

quite inefficiently (e.g., linear search for index term and shift-and-add for multiplica­

tion).

• Non-cdr coded lists also contribute to the slight degradation in performance for small

programs such as nrevt (which has a decent hit ratio of 98.3%).

6.4.3 Simulation Cost

Although the time that the simulators require to run on the host is largely inde­

pendent of the correctness of the results, it is interesting to compare simulation cost of the

two simulators because they simulate at two different levels and follow different simulation

methodologies.

The following explanations refer to Table 6.2:

• Column VP host run time provides the the time taken to run the simulator on the

host in seconds, and column NS/VP host run time provides the NuSim to VPsim

ratio. These numbers are obtained from running simulations on a SUN 3/60 with

16MB of memory. These values give a feel for the response time of the simulators,

ranging from .5 sec to 5920 sees (or 1.64 hours).

• The simulation cost columns are provided as the ratio of cycle count (discussed in

section 6.4.2) to host run time, assuming lOOns cycle time for the NuSim processor

6.4. THE VALIDATION OF NUSIM 85

Table 6.2: Cycle Count and Simulation Time

simulated cycles hit ratio host run time (sec) simulation cost
Benchmarks VP NS/VP NS VP NS/VP VP NS/VP
bin tree 9875 1.30 97.8 3.5 1.43 3544 1.10
chat 6911008 1.09 99.9 1315.9 1.01 1904 0.92
ckt4 1109071 1.14 99.9 165.0 1.00 1488 0.87

compiler 2208006 0.99 99.5 529.5 0.87 2398 0.87

hanoi 78884 1.50 99.9 21.4 1.17 2713 0.78

mumath 96907 1.26 99.8 26.2 0.92 2704 0.73

nrev1 21192 1.38 98.3 6.1 1.31 2878 0.95

palin25 25026 1.08 98.6 7.4 1.08 2957 1.00

puzzle 39456475 0.67 99.9 5920.2 0.43 1500 0.65

qs4 43190 0.98 98.9 11.9 0.92 2755 0.94

qs4..meta 348051 1.17 98.9 113.6 0.65 3264 0.56
queens6 808380 1.06 100.0 125.7 1.03 1555 0.97

query 385559 0.54 99.8 61.6 0.45 1598 0.84
reducer 2543554 1.07 99.5 439.8 1.11 1729 1.04

sdda 85382 1.14 98.5 28.0 0.93 3279 0.82
tak 9398259 0.96 99.2 2461.5 0.62 2619 0.65

con1 256 2.96 88.7 0.5 6.00 19531 2.03
con6 1307 1.52 95.7 0.7 4.29 5356 2.82
fibo 2225 1.44 95.6 1.2 2.50 5393 1.73

and the VLSI-PLM chip. The VP simulation cost represents a slow down factor. For

example, a value such as 2000 in these columns means that it took 2000 seconds of

the SUN 3/60 time to simulate 1 second of the VLSI-PLM.

The worst numbers in the simulation cost column appear in the three smallest bench­

marks con1, con6, and fibo. This is due to the initial overhead of starting up the

simulators. Also in the three smallest benchmarks, the simulation cost of NuSim is

much higher than VPsim {1.73 to 2.82 times worse). This is because NuSim takes

more time to startup, being a multiprocessor simulator and having to assemble the

benchmark into assembly code. For the larger benchmarks, NuSim is more efficient

than VPsim. Excluding the three smallest benchmarks, the average simulation costs

of NuSim and VPsim are 2079 and 2430, respectively. Thus NuSim is 14% more

efficient.

• Even though NuSim simulates the VLSI-PLM at a slightly higher level than the

register-transfer level of VPsim, it is not that much more efficient because VPsim

!

86 CHAPTER 6. SIMULATOR VALIDATION

microcode is "fiat" while NuSim C-routines are hierarchically structured. The cost of

structured code depends on the efficiency of the code generated by the C compiler for

subroutine calls and returns.

Simulation of the VLSI-PLM on a SUN 3/60 is more than 2000 times slower than

actual execution on a VLSI-PLM because of the following reasons:

• VLSI-PLM code is represented internally as ASCII strings, which require longer pro­

cessing time.

• Data and control transfers (the microcode) are processed sequentially. In a real ma­

chine, it would be done in parallel. The VLSI-PLM has a two stage pipeline, with the

data unit and microsequencer executing in parallel. The VLSI-PLM data unit is also

capable of doing 8 simultaneous transfers in one cycle.

• The host processor is less powerful than the target processor for symbolic computation

and the host memory access time is slower than the target memory access time. The

SUN 3/60 that we use has a 20MHz MC68020 and 16MB of main memory (300ns

access time). There is no cache. The VLSI-PLM is a complex processor with tag

processing capability.

• The code generated by the C compiler affects the execution time of the host. For

example, inefficient subroutine calls and returns penalize the hierarchical structure of

NuSim C code.

• The presence of extensive instrumentation code in the simulators for extracting per­

formance results slows down execution on the host.

• The operating system characteristic of the host can greatly affect performance. The

SUN 3/60 runs 4.3 BSD Unix™ and virtual memory. The CPU accesses a shared

file server connected via the Ethernet, and thus page faults are very expensive.

The factors above blend together in the real uniprocessor system and it is difficult

to measure them separately. This is the reason why a simulator is needed for experimen­

tation with individual system parameters. For simulating a multiprocessor configuration,

the event driven approach of NuSim may be accelerated by use of a faster uniprocessor, or

a multiprocessor host, as demonstrated by (Wil87b, Jon86]. For the greatest efficiency in

6.4. THE VALIDATION OF NUSIM 87

Table 6.3: Logical Inference Count

NS VP VP/NS
Benchmark calls escapes KLIPS calls escapes KLIPS KLIPS
bin tree 77 151 177 128 101 232 0.76
chat 66905 60 89 66911 55 97 0.92
ckt4 3544 916 35 4458 3 40 0.87
compiler 15113 7186 102 20886 2539 106 0.96
hanoi 767 765 129 1022 511 194 0.67
mumath 1211 82 106 1221 73 134 0.79
nrev1 497 2 171 497 3 236 0.72
palin25 228 97 121 323 3 130 0.93
puzzle 19796 6018 10 21800 4015 7 1.50
qs4 381 231 144 610 3 142 1.02
qs4..meta 2694 720 84 3795 3 109 0.77
queens6 3207 6130 109 9337 9 116 0.94
query 703 2835 170 2878 661 92 1.85
reducer 15091 6305 79 18815 2491 84 0.94
sdda 552 408 99 715 249 113 0.87
tak 63609 111317 195 174924 3 186 1.05

con1 4 2 79 4 3 273 0.29
con6 6 30 181 6 31 283 0.64
fibo 15 23 118 36 3 175 0.68

simulation, a direct execution approach such as the one proposed by Fujimoto [FC88] may

be used, where the benchmark is compiled into code directly executable by the host. In­

strumentation counters are inserted by the compiler into the code to measure performance

for the target machine.

6.4.4 Operation Count

In Prolog, the metric Kilo Logical Inferences Per Second (KLIPS) is often used

for measuring the performance of Prolog engines. In this dissertation, a logical inference is

defined as a Prolog function call, which includes the VLSI-PLM instructions cal~ execute,

and escape for Prolog builtins. This metric is quite inaccurate since the time required

for a logical inference can vary greatly, depending on the primitive operations required.

The amount of work done by a Prolog function call depends on the number and type

of arguments in Prolog. For parallel execution, the KLIPS measurement has even less

significance. Multiprocessors may do more work but do not necessarily achieve the final

88 CHAPTER 6. SIMULATOR VALIDATION

result any faster, if the additional computations do not contribute directly to the result.

Table 6.3 shows the number of normal calls (and executes) and Prolog builtin

invocations (or escapes). Since VPsim does calls to library routines for some of the builtins,

it has a much higher calls count and fewer escape count than NuSim. In order for KLIPS to

be a useful measure, the condition N Sco.ll + N Se•co.pe ~ V Pco.ll + V Pe•co.pe should hold true.

The following results show that this condition does not hold, due to the implementation

variations of NuSim and VPsim (described in section 6.3.2).

Each of the KLIPS columns is calculated by

calls+ escapes * 10000
cycles

where cycles is obtained from Table 6.2. The unit for calls and escapes is the logical

inference. The constant factor of 10000 comes from the KLIPS unit conversion:

KLIP
109 nsec 1 cycle 1 K

1 = * ·--1 sec 100 nsec 1000

The NS KLIPS and VP KLIPS columns differ widely, showing once again the problem

with this metric. For comparison purpose, the timing information in table 6.2 is much more

useful than this metric.

6.4.5 Memory Accesses

Table 6.4 compares the number of memory accesses made in running the simula­

tions on NuSim and the VPsim. The VP total references column gives the total number of

memory accesses, which ranges from about 100 to over 11 million. The other columns show

the breakdown of references into instruction fetches, data reads, and data writes.

The following can be observed:

• The total references for most programs under the two simulators are within 20% of

each other. The biggest variations are for con1 (2.11), con6 (1.58), and nrev1 (1.51).

The variations are perfect examples of worst case performance without cdr-coding

(in NuSim), which would require more instruction fetches, reads and writes. For the

larger benchmarks, cdr-coding makes little difference.

• For the most part, NuSim requires more instruction fetches than VPsim. This is be­

cause NuSim instructions are less compact than VPsim. They are encoded in word

6.4. THE VALIDATION OF NUSIM 89

Table 6.4: Memory References

total references instruction fetches data reads data writes
Benchmark VP ~ VP ~ VP ~ VP ~
bin tree 5601 1.19 2527 1.03 1568 1.80 1506 0.82
chat 3695155 1.16 1376937 1.50 1158506 0.95 1159712 0.97
ckt4 547619 1.25 149409 1.95 249946 0.97 148264 1.02
compiler 1259778 1.07 470464 1.18 426110 1.06 363204 0.93
hanoi 51811 1.38 21441 1.65 13776 1.26 16594 1.12
mumath 53052 1.29 18258 1.78 18639 1.03 16155 1.03
nrev1 8473 1.51 4812 1.97 2017 0.81 1644 1.06
palin25 12759 1.10 5695 1.31 4114 0.89 2950 0.99
puzzle 11600446 0.81 771251 1.59 9498654 0.72 1330541 0.99
qs4 24302 0.93 11141 1.04 5509 0.87 7652 0.79
qs4...meta 197469 1.13 70542 1.42 61671 0.97 65256 0.96
queens6 504104 1.09 212691 1.24 172009 0.98 119404 1.00
query 102771 1.01 60780 0.92 27513 1.30 14478 0.83
reducer 1367058 1.14 462255 1.46 507144 0.99 397659 0.97
sdda 48313 1.13 17831 1.33 16752 1.08 13730 0.95
tak 5979238 0.83 3291760 0.66 1033643 1.18 1653835 0.96

con1 94 2.11 55 2.07 17 2.94 22 1.55
con6 499 1.58 163 1.84 170 1.86 166 1.04
fibo 1207 1.10 648 1.13 215 1.24 344 0.95

streams, with the opcode and each operand taking up one 32-bit word. VPsim has

the code stored in string tables, but the microcode generates prefetch signals to sim­

ulate an encoding of 8-bit opcode and 32-bit arguments. Furthermore, NuSim fetches

instructions on demand, while VPsim does prefetching.

• The instruction fetch ratios show that the word-encoding of NuSim require more

fetches, as expected. However, for tak, N uSim fetches much less (instruction fetch ratio

of 0.66) because many subtractions are done and NuSim use the builtin instruction

is/2, while VPsim does a call to the library routine st~.b/9 which require a longer

sequence of simpler instructions.

• The reasons for the differences in the number of data reads include: (a) cdr-coding

in VPsim require fewer reads, and (b) solving arithmetic expression in VPsim require

fewer reads because VPsim has simple arithmetic instructions (add and st~.btract). In

NuSim, arithmetic expressions are put in structures and passed to the is/2 builtin.

For the most part, the number of data writes for both VPsim and NuSim are the

90 CHAPTER 6. SIMULATOR VALIDATION

same.

6.5 Chapter Summary

In this chapter, we have described an approach for validating the simulator of a

multiprocessor system. The processor and the memory module of a multiprocessor simula­

tor (NuSim) has been validated by comparing it with a previously validated uniprocessor

simulator (VPsim). Benchmarks of various sizes were executed sequentially on both simu­

lators, and different performance measurements were evaluated and compared against one

another.

Because the simulation result is a composite result of many factors, a number of

measurements were used for comparison to obtain different perspectives on performance

and to understand the reasons of the variations. The chosen measurements were: code

size, cycle count, simulation cost, operation count, and memory access count. The different

measurements indicate that the variations are significant only for the small benchmarks,

where startup time and slight model differences are a big percentage of total execution

time. For large programs, NuSim is within 10% of the VLSI-PLM timing. Perhaps more

importantly, all variations can be accounted for. It can be concluded that NuSim is rep­

resentative of a VLSI-PLM in a multiprocessor system. With NuSim, the performance of

memory management for a shared memory multiprocessor can be evaluated.

91

Chapter 7

ELPS Simulation Experiments

and Results

This chapter presents the experiments done using the multiprocessor simulator

and the corresponding results. The first part is an evaluation of the potential effect on

performance for each of the variations to the sequential model. The second part provides

the overall performance of the ELPS memory management scheme described in chapter 4.

7.1 Sequential Execution Performance

The ELPS memory management scheme uses discontiguous pages of memory to

form a logically continuous stack. In the most general case where the addresses of the

pages may be in arbitrary order, address comparison of two data objects in the stack to

determine their relative order is not possible. Section 4.3.3 proposed modifications to the

WAM to eliminate the need for address comparison. This section presents the simulation

results from each of these modifications, to evaluate their effects on sequential execution

performance. For the simulation runs, the cache is configured to a size of 16K words and is

4-way associative, with a block size of 16 bytes, LRU replacement, and write back policy.

7.1.1 Split Environment and Choice Point Stacks

The WAM local stack is a combined stack model, which contains both choice

points and environment. As described in Tick's dissertation [Tic87], it can be split into

92 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

two stacks (split stack model), one for each type of control structure. The choice point

stack is a true stack, where the topmost choice point is always the current choice point.

On the other hand, the current environment is not necessarily the one at the top of the

environment stack. Splitting the two stacks has the advantage of greater access locality for

choice points and ability to reclaim space of the choice points which may be trapped deeply

below an environment, or of environments trapped below a choice point. Figure 1.1 shows

a pathological example for which a split stack is much better. On the negative side, the

split stack model has the complexity of maintaining an extra stack pointer.

Table 1.1 shows the space and time performance of split stack versus combined

stack. As shown in the Cycles ratio split/combined (s/c) column, the split stack model

execution times is within 3% those of the combined stack model. With respect to space

usage, the maximum space used by heap and trail are identical for both models. For the

environment and choicepoint stacks, the maximum space usage of the split stack model

is mostly the same as that of the combined stack model, with some programs having a

maximum usage of 90% of the combined stack model (column envir+choicept (sjc)). The

overall effect of these programs is no more than 4% (column total (sjc)). The only exception

to this trend is the benchmark sdda, whose maximum (environment+choicepoint) usage of

split stack is only 56% of that of combined stack, with the overall space usage of split stack

reaching only 73% of that of combined stack. The reason is that sdda has a section of

code which is very similar to the example shown in figure 1.1, where the chokepoints and

environments trap one another, preventing space from being reclaimed.

Table 1.2 shows the memory statistics of split stack versus combined stack, which

include cache hit ratio, bus utilization, memory references (to/from cache memory), reads

from main memory (bus reads), and writes to main memory (bus writes). For each of

these measurements, the value for combined stack is presented together with the ratio of

the corresponding value of split stack over combined stack (s/c). The hit ratio is almost

identical for both models. The split stack model results in an average of 3% more memory

accesses. This is the effect of managing an extra stack pointer. The bus utilization goes

down slightly for split stack. Since there is a greater degree of locality for the separate

choicepoint stack, the number of bus reads and bus writes also decrease slightly. The zero

value in the bus writes column indicate that the writeback cache is big enough such that

no flushing to memory is needed. Correspondingly, the split/combined ratio column is left

empty.

7.1. SEQUENTIAL EXECUTION PERFORMANCE

% Pathological example to show the advantage of split stacks

% The program alternately creates choicepoints and environments

% which trap one another, and doesn't reclaim space in

% combined stack. (Courtesy of Peter Van Roy)

?- p(100).

p(O)

p(N)

p(_).

d.

ch.

ch.

:-

:-

! .

d, I .. % create env before a cut to trap choicept for p()

N1 is N-1,

ch, % create choicept to trap env

p(N1).

Figure 7.1: Disadvantage of Combined Environment/Choicepoint Stack

93

In the program above, a chokepoint for pO is created. In the clause p(N), an environment

is laid down before procedure d is called to store return address. When the cut (!) is

reached, the top choicepoint pointer is moved down to a previous choicepoint, deallocating

choicepoint for p(). However, since the chokepoint is below the environment of p(N),

this deallocated space cannot be reclaimed. When procedure ch is called, a choicepoint

is created for ch. When p(N1) is reached, environment for p(N) is deallocated, but space

cannot be reclaimed because it is below choicepoint for ch. In the split stack model, no

such trapping can occur.

94 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

Table 7.1: Split vs. Combined Environment/Choicepoint Stack

Cycles Maximum Space Usage
heap trail envir+choicept total

Benchmark combined split/comb. combined sfc sfc
bin tree 13508 1.00 75 5 426 1.00 1.00

boyer 46507026 1.01 544023 95274 634 1.02 1.00

browse 2565514 1.01 665 114 399 1.00 1.00

chat 7673061 1.01 1518 414 2592 0.93 0.96

ckt4 1269879 1.02 141 71 377 1.02 1.02

compiler 2259298 1.00 4769 791 2021 0.89 0.97

qs4 43439 1.00 658 107 85 1.00 1.00

qs4..meta 428072 1.01 4460 1223 7504 1.00 1.00

query 208743 1.03 12 8 58 1.00 1.00

reducer 2788988 1.01 29052 8032 2395 0.90 0.99

sdda 102395 0.99 938 269 1916 0.56 0.73

tak 9384597 0.99 238530 0 200 1.00 1.00

tp3 3369301 1.01 29223 8300 3751 1.00 1.00

average II 1.01 o.95 1 o.98

Table 7.2: Memory Statistics for Split vs. Combined Stack

hit ratio bus util. mem. references bus reads bus writes

Benchmark comb. s/c com. sfc comb. s/c comb. sfc comb. sfc
bin tree 96.8 1.00 12.9 1.00 6730 1.02 868 1.00 0
boyer 99.3 1.00 4.7 0.98 25672217 1.04 690916 1.00 630364 1.00

browse 100.0 1.00 0.2 1.00 1558652 1.03 2680 1.00 0

chat 99.9 1.00 0.6 1.00 4330329 1.04 22048 0.96 3004 0.85

ckt4 99.9 1.00 0.2 1.00 683432 1.05 1472 1.01 0
compiler 99.3 1.00 3.8 0.92 1353377 1.03 38664 0.94 6528 0.83
qs4 98.5 1.00 6.2 1.02 22412 1.02 1356 1.00 0
qs4..meta 98.4 1.00 6.8 0.99 225354 1.04 14140 1.00 504 1.01
queens6 100.0 1.00 1.1 1.00 551963 1.03 860 1.00 0
query 99.8 1.00 4.2 0.98 104076 1.05 800 1.00 0
reducer 99.3 1.00 4.3 0.98 1568647 1.04 43108 1.00 26200 0.99
sdda 97.7 1.01 9.7 0.84 54616 1.03 4944 0.83 0
tak 98.8 1.00 8.1 1.00 4945568 1.00 239244 1.00 222740 1.00
tp3 99.4 1.00 4.0 0.97 1915884 1.03 48888 1.00 29144 1.00

average II 1.oo 1 o.98 1 1.o3 1 o.98 1 0.95

7.1. SEQUENTIAL EXECUTION PERFORMANCE 95

From these results, we can conclude that it is clearly advantageous to split the

environment and choicepoint stack. We thus make use of split stack for the next two

experiments.

7.1.2 Always Trail

In the original WAM model, checks are performed to decide whether it is really

necessary to trail a binding. The binding of a variable needs to be trailed only if the

variable is created before the current choicepoint. The check is performed by comparing

the variable's address with the top choicepoint pointer (B register), if the variable is a

permanent variable on the stack, or with the heap backtrack pointer (HB register), if the

variable is on the heap. In the split stack model, the stack variable must be compared

with the top of the environment stack at the time that the choicepoint is created on the

choicepoint stack. This environment stack pointer is saved in the choicepoint. The question

of whether or not to perform the trail check is a tradeoff between type of memory access

(read or write) and space. The trail checks require more memory reads and more time for

the comparison, but do fewer writes and thus use less space if trailing is not necessary.

Table 1.3 shows a comparison of selective trail (which performs trail checks) and

always trail (which does no checking). The Cycles always trail/selective trail (a/s) ratio

column shows that both models take about the same amount of time to execute. The

maximum space usage for heap, environment, and choicepoint are identical for both models.

However, the trail space usage columns shows that the lack of trail checks can lead to

explosion in trail space usage. Program tak is an extreme case which does not trail at all

with trail checks, and require almost lOOK words of trail space without trail checks. The

overall space effect (column total (always/selective)) can be as high as 62% more space for

program boyer. Perhaps most importantly, since trail space is often a very small percentage

of overall space usage, such explosion in space usage would result in overflowing the small

space reserved for the trail stack.

Table 1 . .j shows the effect that always trailing has on the memory system. Always

trailing has little to no effect on the hit ratio and the number of memory references. A trail

check requires a read, whereas a trail operation requires a write. The excessive number of

writes for always trailing causes the block in the cache to be flushed to memory and later

brought back into the cache. This explains the sharp increase in bus reads and bus writes

96 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

Table 7.3: Always Trail vs. Selective Trail (split stacks)

Cycles Maximum Space Usage
heap env chpt trail total

selective ajs sel. always ajs a/s
bin tree 13560 1.00 75 81 345 5 51 10.20 1.09
boyer 47059439 1.01 544023 394 255 95274 494444 5.19 1.62
browse 2585430 0.98 665 85 315 114 470 4.12 1.30
chat 7786363 0.97 1518 1062 1350 414 577 1.39 1.04

ckt4 1299223 0.95 141 41 345 71 102 1.44 1.05
compiler 2270210 1.00 4769 715 1080 791 2007 2.54 1.17
qs4 43504 1.00 658 70 15 107 431 4.03 1.38
qs4_meta 433001 0.99 4460 4129 3375 1223 2544 2.08 1.10
queens6 867112 0.99 43 123 195 13 22 1.69 1.02
query 214477 0.96 12 28 30 8 17 2.13 1.12
reducer 2824152 0.99 29052 1100 1050 8032 15882 1.98 1.20
sdda 101007 0.99 938 557 510 269 596 2.22 1.14
tak 9337079 1.04 238530 185 15 0 95413 1.40
tp3 3406891 1.01 29223 2521 1230 8300 29619 3.57 1.52

average II o.99 1 3.27 1 1.23

Table 7.4: Memory Statistics for Always vs. Selective Trail (split stacks)

hit ratio bus util. mem. references bus reads bus writes
Benchmark sel. ajs sel. ajs sel. a/s sel. ajs sel. a/s
bin tree 96.8 1.00 12.9 1.05 6855 1.00 868 1.05 0
boyer 99.4 1.00 4.6 1.59 26618704 0.99 690984 1.60 630532 1.64
browse 100.0 1.00 0.2 1.00 1603985 1.00 2684 1.13 0
chat 99.9 1.00 0.6 1.00 4494333 1.00 21132 1.01 2548 1.04
ckt4 99.9 1.00 0.2 1.00 717937 0.98 1484 1.02 0
compiler 99.3 1.00 3.5 1.23 1392346 1.01 36488 1.19 5420 1.51
qs4 98.5 1.00 6.3 1.24 22766 1.00 1360 1.24 0
qs4_meta 98.5 1.00 6.7 1.10 233582 0.99 14144 1.09 508 0.97
queens6 100.0 1.00 1.1 1.00 568335 1.02 864 1.01 0
query 99.8 1.00 4.1 1.05 109195 1.00 804 1.01 0
reducer 99.3 1.00 4.2 1.24 1625630 0.99 42904 1.18 26044 1.30
sdda 98.2 1.00 8.1 1.10 56368 0.99 4096 1.08 0
tak 98.8 0.99 8.1 1.36 4961472 1.02 239288 1.40 222776 1.43
tp3 99.4 1.00 3.9 1.54 1975138 1.00 48960 1.47 29164 1.73

average II 1.oo 1 1.18 1 1.oo 1 1.18 1 1.37

7.1. SEQUENTIAL EXECUTION PERFORMANCE 97

(and correspondingly, bus utilization).

Under static partitioning, the potential space explosion can cause serious overflow

problems if it is not handled properly. ELPS should be able to handle this quite efficiently.

However, the extra writes can heavily tax the multiprocessor memory system, resulting in

performance degradation. Therefore, always trailing is not a good idea in general. However,

it should be noted that always trailing may be a good idea in a system where:

• memory write is as fast as memory read by employing write buffering.

• there is hardware support for stack write optimization; that is, pushing onto the stack

does not require reading the block from memory into cache.

• frequent garbage collection is performed; the trail space can be quickly reclaimed, and

thus the space explosion and excess writes will become less problematic.

7.1.3 Put Permanent Variables on Heap

A variable is referred to as permanent if it needs to be retained across the goals in

the body of a clause. In the WAM model, permanent variables are put in the stack, together

with the environment. Since the tail recursion optimization discards the environment before

the last call in a clause, the permanent variables are copied onto the heap after this last call

using the put_unsafe_value instruction. The WAM model requires that a variable must

be checked to see whether it resides on the heap or on the stack for proper trail operation.

An alternative is to immediately place the unbound variable on the heap, with the stack

variable pointing to it. The dereference operation will always follow the pointer to the

variable on the heap, thus it is not necessary to check for a variable on the stack. Putting

all permanent variables on heap simplifies the trail check and eliminates the need for the

put_unsafe_value instruction. On the negative side, it may require more heap space and

longer access time due to the extra level of indirection.

Table 7.5 shows the comparison between the standard WAM model and the vari­

ation of permanent variable on heap. The Cycles on heap/on stack (hp/stk) column shows

little difference in execution times. The maximum space usage for environment and choi­

cepoint stacks are identical under both models. The heap ratio column shows an average

increase of 18% for putting permanent variables on heap. Several programs exhibit a greater

than 20% increase in heap space usage. For these programs, put_unsa:fe_value statically

98 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

Table 7.5: Permanent Variables on Heap vs. on Stack (split stacks)

Cycles Maximum Space Usage
en vir chpt heap trail total

Benchmark on stack .flf on stk ~ on stk #,; .fk.
bin tree 13560 1.00 81 345 75 1.09 5 1.00 1.01
boyer 47059439 1.01 394 255 544023 1.14 95274 1.00 1.12
browse 2585430 1.00 85 315 665 1.05 114 1.04 1.03
chat 7786363 1.01 1062 1350 1518 1.17 414 0.95 1.05
ckt4 1299223 1.00 41 345 141 1.07 71 1.00 1.02
compiler 2270210 1.01 715 1080 4769 1.10 791 1.20 1.09
qs4 43504 1.02 70 15 658 1.23 107 1.00 1.18
qs4..meta 433001 1.02 4129 3375 4460 1.30 1223 1.03 1.11
queens6 867112 1.01 123 195 43 1.16 13 1.00 1.02
query 214477 1.00 28 30 12 1.42 8 0.75 1.04
reducer 2824152 1.00 1100 1050 29052 1.06 8032 0.99 1.04
sdda 101007 1.01 557 510 938 1.11 269 1.01 1.05
tak 9337079 1.03 185 15 238530 1.20 0 1.20
tp3 3406891 1.02 2521 1230 29223 1.41 8300 1.09 1.31

average II 1.01 1 1.18 1 1.oo 1 1.o9

Table 7.6: Memory Statistics for Perm. Vars. on Heap vs. on Stack (split stacks)

hit ratio bus util mem. references bus reads bus writes
Benchmark stk * stk * on stack ~ stk * stk * bin tree 96.8 1.00 12.9 1.01 6855 1.00 868 1.01 0
boyer 99.4 1.00 4.6 1.11 26618704 1.01 690984 1.12 630532 1.12
browse 100.0 1.00 0.2 1.00 1603985 1.01 2684 1.01 0
chat 99.9 1.00 0.6 1.00 4494333 1.02 21132 1.02 2548 1.14
ckt4 99.9 1.00 0.2 1.00 717937 1.00 1484 1.01 0
compiler 99.3 1.00 3.5 1.09 1392346 1.01 36488 1.09 5420 1.29
qs4 98.5 1.00 6.3 1.08 22766 1.01 1360 1.11 0
qs4..meta 98.5 1.00 6.7 1.07 233582 1.02 14144 1.10 508 1.13
queens6 100.0 1.00 1.1 1.00 568335 1.01 864 1.01 0
query 99.8 1.00 4.1 1.00 109195 1.00 804 1.00 0
reducer 99.3 1.00 4.2 1.05 1625630 1.00 42904 1.04 26044 1.06
sdda 98.2 1.00 8.1 1.02 56368 1.00 4096 1.03 0
tak 98.8 1.00 8.1 1.17 4961472 1.02 239288 1.20 222776 1.21
tp3 99.4 1.00 3.9 1.31 1975138 1.01 48960 1.28 29164 1.44

average II 1.oo 1 1.o6 1 1.01 1 1.01 1 1.20

7.1. SEQUENTIAL EXECUTION PERFORMANCE 99

occurs often in recursive procedures. However, the permanent variable does not get cre­

ated on the heap if before the put_unsafe_value instruction is reached, failure occurs or the

variable gets bound.

The trail usage on the average is the same in both models. The fluctuations in the

trail column are due to three reasons:

1. put_unsafe_value performs a trail operation when it copies a variable from the stack

onto the heap, while the variable-on-heap model does not trail. Thus, if the variable

is bound before the put_unsafe_value instruction is reached, both models will do the

same amount of trailing.

2. If the variable is still unbound, the variable-on-heap model does less trailing.

3. The recovery of the heap is not optimal at the time of trust. trust...me_else. cut

and cutd. The heap backtrack (HB) pointer is reset to the saved heap (H) pointer in

the choicepoint being cut. Optimally, the heap backtrack pointer should be reset to

the saved heap pointer of the choicepoint below the chokepoint being cut, if it exists,

or to the heap base, if there is no current chokepoint. This optimal reset costs extra

time for the check and possibly an additional memory read. A simple solution to this

is to create a dummy choice point at the bottom of the choice point stack for use as

a sentinel.

Overall, the total space usage for putting permanent variables on the heap requires 9% more

space on average.

Table 7. 6 shows the memory performance of the variable-on-heap model, as com­

pared with the original WAM model. Once again, the hit ratio and the number of memory

references are not affected by the model variation. However, the change in heap and trail

usage causes a corresponding change in average bus utilization (6% increase), bus reads (7%

increase), and bus writes (20% increase).

In summary, putting variables on the heap results in 18% increase in heap space

usage (9% overall) and 6% increase in bus utilization, but does not cost any additional

cycles. Furthermore, it greatly simplifies the trail check operation and eliminates the need

to copy variables from the stack to the heap when the environment is discarded. Therefore,

we can conclude that putting variables on the heap is an acceptable variation to the original

WAMmodel.

100 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

7.2 Parallel Execution and ELPS Performance

Seven Prolog benchmark programs are chosen for our study of ELPS in parallel

execution. These programs exhibit a variety of parallelism characteristics and memory

usage. Table 1. 7 lists the benchmarks, their static code sizes, and a brief explanation for

each. Prolog programs are annotated for parallel execution, compiled into assembly code,

and loaded into the simulator.

Table 7.7: Benchmark Code Sizes and Descriptions

Benchmark
boyer
chat
ckt4
compiler
qsd200
query
tp3

lines of
Prolog code

396
1196
48

2271
18
71
763

Description
Boyer-Moore theorem prover
natural language parser
circuit design for a 2-to-1 mux
a Prolog compiler
quicksort on list of 200 data items
multiple queries of a simple database
Overbeek's theorem prover

Qsd200 is a version of quicksort using a data structure called the difference list. This allows

the two subpartitions of a list to be sorted in parallel and afterwards linked together in

constant time.

7.2.1 Execution Time Overhead

Table 1.8 shows the execution times of the programs for three configurations: static

partitioning, ELPS with hardware support, and ELPS with software only. The overhead

percentage is computed by (•tatac ~r;.'i.!::~ tame -1) X 100. To study the overhead of ELPS,

the number of tasks is set to a maximum of 64 for all configurations. ELPS page size is

set at 4K words so that overflow does not occur in most programs 1 • Furthermore, the

multiprocessor system is configured to single cycle memory to factor out the cache effects.

The cache effects will be considered in section 7.2.3. As explained in section 5.9, no time

is charged for checks with hardware support, and two cycles are charged for each overflow

check with software only. Without any overflow, the overhead of ELPS includes the extra

time incurred by: (a) the checks for page overflow (if software only), and (b) the checks

for variable locality (for OR-parallelism and always done in software). A variable is local

1 Overflows occur only in boyer a.nd tp3.

7.2. PARALLEL EXECUTION AND ELPS PERFORMANCE

Table 7.8: Overhead of ELPS Checking and Overflow Handling

benchmark
query
qsd200
compiler
ckt4
chat
tp3
boyer

ar1th mean II
geom mean

static
partitioning

(cycle)
34757
67050

1088084
1468717
2290302
3213414

51370794

ELPS with
hardware support

(cycle)
35969
67610

1101923
1516685
2347801
3254666

52008092

(% overhead)
3.5
0.8
1.3
3.3
2.5
1.3
1.2

2.0
2.0

ELPS with
software only

(cycle)
39142
75788

1190858
1670465
2580181
3449535

56096531

(% overhead)
12.6
13.0
9.4

13.7
12.7
7.3
9.2

11.1
10.9

101

(or internal) to a task 2 if it exists on the heap stack of that task. The linked list of pages

forming the heap stack may need to be traversed to determine if the variable lies in one of

the pages.

With hardware support for overflow checking, the overhead for all programs ranges

from 0.8% to 3.5% (2% on average). With software-only checking, the overhead is quite a

bit higher, ranging from 7.3% to 13.7% (11% on average). Thus hardware support provides

an average of 9% improvement in total execution time over software-only checking.

Table 1.9 shows a breakdown of ELPS behavior. In this table, the page size is

set to 1K for greater overflow frequency. The first column shows the average number of

cycles between checks. The average over all programs, except query, is 87 cycles between

checks. Query requires very infrequent overflow checks (one every 4831 cycles) because it

spends most of the time reading a database and writes very infrequently to the stacks. The

next two columns show the number of overflows and the average time required to handle

an overflow. The number of overflows depend greatly on the page size. An advantage of

ELPS is very fast overflow handling which is in tens of cycles.

The new page request percentages (number of new page requests/number of over­

flows) indicate the degree of stack pointer movement across page boundaries. When a page

overflow occurs for the first time, a new page is obtained. When the stack underflows to the

previous page, the current page is retained (lazy deallocation) so that subsequent overflows

do not require new pages. Boyer and chat are examples of opposite extreme behaviors. The

2 Bindings to internal variables are stored in place at the specified address, while bindings to external
variables are stored in the hashwindow (previously discussed in section 3.4.5).

102 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

Table 7 9· Behavior of ELPS Checking and Overflow Handling

cycles number a vg overflow new page times
between of over- handling requests unable

benchmark checks flows time (%) to spawn*

ckt4 126 0 - - 0

query 4831 0 - - 23

qsd200 84 1 31 100.0 137

compiler 73 26 26 69.2 0

tp3 80 129 15 52.7 279

chat 68 357 2 2.5 0

boyer 92 1851 23 98.3 93993

* under static partitioning

stacks in boyer primarily grow upward (98.3% new page requests), while the stacks in chat

backtracks very frequently (only 2.5% new page requests). For chat, lazy deallocation is

clearly advantageous. It results in an average overflow handling time of only 2 cycles.

The last column in table 7.9 shows the number of times that new tasks could not

be spawned because the number of tasks is limited (to 64), with all unused space statically

allocated to other tasks. This column shows the key advantage of ELPS. With ELPS,

memory is efficiently distributed to keep up with the demand for a very large number of

tasks. For ELPS, this unable-to-spawn column would typically be zero. While ELPS provide

memory space support for a high degree of parallelism, the resulting speedup depends on

the ability of the scheduler to efficiently exploit parallelism (i.e., to spawn a parallel task

only when the amount of work to be done by the new task is sufficiently higher than the

overhead of task creation, communication, and termination).

Fragmentation is another performance measure of ELPS. Internal fragmentation

occurs when the space at the top of each page is insufficient to store the data object.

External fragmentation is the amount of space unused on the section of the page beyond

the top of stack pointer. Compared to a smaller page size, a larger page size will tend to

have greater external fragmentation but less internal fragmentation. For the chosen set of

benchmark programs, internal fragmentation is consistently very small, averaging less than

10 words per 1K word page (less than 1%). External fragmentation varies greatly from

program to program. Compared with static partitioning, ELPS has slightly more internal

fragmentation (none in static partitioning), but much less external fragmentation (ELPS

7.2. PARALLEL EXECUTION AND ELPS PERFORMANCE 103

page size is much smaller than a static partition).

7.2.2 Parallelism Gained

A key point of ELPS is efficient sharing of the global address space to allow a very

large number of tasks to be spawned. An example of the degree of parallelism gained with

more tasks is shown in figures 7.2 (a)-(d). Each graph captures the same period of time of

the execution of boyer, a Prolog version of the Boyer-Moore theorem prover.

In the top two graphs, the maximum number of tasks is set to 64, with ID numbers

from 0 to 63. Each horizontal segment in figure 7.2(a) shows the period of time in which a

task executes in some processor. With the simulated architecture configured to 8 processors,

any vertical line has at most 8 intersection points. The diagonal slope shows the start of the

task creations as new tasks are spawned during execution. Task space may be reclaimed

only if that task terminates. After some time, all tasks but one go into sleeping state and

hang on to their task space for potential future backtracking. When all tasks are used,

execution proceeds sequentially (as shown by the long horizontal line from cycle 70000 to

cycle 165000 of figure 7.2(a)).

Figure 7.2(b) shows the corresponding processor utilization, with only one proces­

sor busy since time 75000. In the bottom two graphs, the maximum number of tasks is

increased to 256 (task ID 0-255). Four times more tasks are now spawned, and all eight

processors are kept quite busy during the specified window of time.

Over the entire execution, boyer runs 2X faster with 256 tasks than with 64 tasks.

However, a maximum of 256 tasks is still insufficient. When this maximum is reached, it

runs sequentially until the end. If the parallel execution pattern is extrapolated over the

entire run, we can expect a 4X to 6X speed up (with 8 processors and a very large number

of tasks) over the execution run with 64 tasks maximum.

ELPS allows for a very large number of tasks. The significant potential of advan­

tage of ELPS over static partitioning can be illustrated by a specific example. Consider a

32-bit address space and a set of programs that use tens of words up to 1M words for each

stack. For static partitioning, stack must be configured to the largest possible size to avoid

overflow. If each stack is sized at 1M words, there can be at most ~ = 212 = 4096 stacks.

Suppose that only 20% of the stacks are near the 1M-word usage while the others are less

than 1K (such unpredictable usage is often the case for parallel execution of Prolog under

u~u~_~ __ r'--~----r---.-~~~~-=(a==)~ta=-=s=k=-;ru==n=t~i=ma=-=·~-(=ma=-=x~ta==s=k=•;===='~4~)=':=;===~1--~----.----.----r--, halcll
1

- -

"' £__ _ _ I sequential .,

~ -
0

.eo 10 60 10 eo to t~_!! ____ 120 tJO t40 teo t60 t • 1111 103

c•-11~'*'"""1 I (b) procasaor utilization (Ball: tasks = 64) ']

~" 1 :_ .l ; i l "l -i i .. : : .~ .:. ~ ~ .~ .~ ~ .: J.. w

c•--n_~=--.=-·=·~ij--~----r---.---~l=<=c=)~ta==•=k~run==~t=i .. ==•~(=max==~ta==•k=•~===2~5=6=)==;===~'--~--~.----.----r--~ t.Mkll r .

-1

1:101

100

DOl ...
140

~

tM

to' .. ,
... ..
....

I parallel

.z<:r

"""""""
stan

~-<=-
~--
~ ~-=

..
~­

~-­~----== __
~--

-=-

--
" ~ B A Jo It A lo It It 1ti sU di do do do sto 1.. ,.Jt. • to3

~~ - -
~j'JI~'*'"""I I (d) procaaaor utilization (IIIIX taaka ,. 256))

1 ~ : ~ : : : ; ~ ; ; ; ; ~ 8 ; ~ :- ~ j ~ " = u * M " 5 u u -,. uo : - '* ,: - - 1 -· • W

Figure 7.2: Task and Processor Parallel Execution Behavior of Boyer

.....
~

£
;J;..
"tt

~
~

~
~
~
~
~
;J;..

~
0
~

~
~
~
~
~
>
~
~

~
~
~

7.2. PARALLEL EXECUTION AND ELPS PERFORMANCE

Table 7.10: Effect of ELPS Page Size on Execution Time

static
partitioning

Benchmark (cycle)

qsd200 97048
query 63586
chat 2353059
ckt4 1554513
compiler 1261500
beyer 55100234
tp3 3394992

arith mean
geom mean

Overhead % of ELPS/static partitioning
no hashing for data start

(page sizes in words)
512 lK 2K 4K 8K

3.6 8.0 11.4 14.5 14.5
6.7 8.9 12.7 26.0 26.0
3.2 3.4 3.5 4.9 4.9
4.4 4.4 4.3 4.9 4.9
3.5 3.1 3.4 5.1 5.1

- 6.9 5.3 4.6 4.1
6.4 5.3 4.9 4.5 4.3

4.6 5.7 6.5 9.2 9.1
4.4 5.3 5.7 7.1 7.0

(a) 8 slots, 128 words per slot
(b) 7 slots, 32 words per slot

with hashing
8K page

(a) (b)

5.4 7.5
5.2 5.3
3.7 4.7
4.4 4.4
4.1 3.9
4.1 4.1
4.3 4.3

4.5 4.9
4.4 4.8

105

the PPP model). Thus 20% of the space can be partitioned into pages of 1M word each,

while the other 80% can be partitioned into pages of lK word each. Hence, there can be at

most ~ x 0.2 + ~ X 0.8 = 3356262 stacks, or almost 3.4 million more stacks with ELPS

than with static partitioning. While the exact number varies with each program, ELPS

can potentially support millions more tasks (each with one or more stacks) than static

partitioning without the need for garbage collection or other schemes to handle overflow,

while allowing the tasks to fully share the global address space. Currently, we are unable

to simulate the full potential of ELPS due to memory limitations imposed by the host on

which the simulator is run.

7.2.3 Effect of Page Size on Performance

Page size is a main parameter in the ELPS memory management scheme. It can

be set at system configuration time, by specifying the value of the page mask register. In

this section, we examine the effect of page size on performance.

Table 1.10 shows the ratio of execution time of ELPS over static partitioning,

expressed as an overhead percentage. Seven page configurations are chosen, ranging from

512 words to 8K words per page. From this table, we classified the programs into three

groups according to their observed behavior. As the page size increases, the overheads of

106 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

programs exhibit three distinct patterns: (1) sharp increase, (2) slight increase, and (3)

decrease. (For the time being, consider only the columns marked as "no hashing for data

start." The comparison to the "with hashing" columns will soon follow.) Compared to

the tasks in the third group, the tasks in the first two groups use fairly small spaces and

overflow very infrequently. The overhead increase (as the page size increases) is due to block

collisions in the caches. In the third group, the tasks use very large spaces and the overflow

very frequently. Thus the larger page size results in fewer overflows and faster execution.

The block collision in the caches can best be explained with the specific cache

parameters. Our simulation has a cache configuration of 16K word cache size, 4-way asso­

ciative, and 4 word block size. Thus, there are 1K cache sets3 , each set having 4 slots. H

the ELPS page size is 1K, the first location of all pages will fall in the same cache set. H

the page size is 512, the first location of every other page will fall in the same cache set. In

the worst case, a page size of 4K or greater will fall in the same cache set and will occupy

all four slots in the set, thus requiring frequent flushes to memory to free up the slots. This

flushing increases bus activity and slows down execution. This collision is most serious for

programs with very small task spaces (as those in group 1), since most accesses would be

done near the stack bases. For programs with larger task spaces (as those in group 2), this

collision makes little difference (less than 2%).

There are two possible types of collision in the cache blocks. Internal collision

occurs when the low bits of the cache blocks of one stack are identical to those of another

stack belong to the same task. This case is most serious for caches where the associativity

is less than the number of stacks in a task. External collision occurs when when the stacks

belong to different tasks. In our 4-way associative cache, internal collision is not a problem

for the four stacks in a task. On the other hand, external collision occurs when a processor

executing a new task needs to flush out data from previous task to make room for the

new one. When an old task- or a new task which reuses the old space of a terminated

task - is swapped in, its stack space needs to be loaded into the cache from memory.

Much of this extraneous bus traffic can be reduced by a more intelligent cache system such

that: (a) a stack push operation does not need to read the block in from memory, and (b)

the cache blocks of a task that has been killed should be invalidated. Such cache system

has been implemented on sequential architectures for Prolog (PSI-II [NN87] and Berkeley

3 number of cache sets = cache size I block size I a.ssocia.tivity = 16K I 4 I 4

7.2. PARALLEL EXECUTION AND ELPS PERFORMANCE

10.0

ELPS
9.0

execution 8.0

time 7.0
overhead

6.0 (o/o)
5.0

4.0

512

..... c:>·-·----·--()

arithmetic mean

•••• ~::>'
e-······ geometric mean

.-··

1K 2K 4K

ELPS page size

8K

Figure 7.3: Average Effect of ELPS Page Size on Execution Time

107

Abstract Machine (BAM) [HSC*90]) and on parallel logic programming architectures (by

Goto [GMT89]).

Both types of collisions can be controlled by using a hash function to vary the

starting address (in an ELPS page) for data storage. The space between the lowest address

of the page and starting address for data storage would be left unused. The following

hashing function was used to determine the offset for the starting address:

offset = (page number mod number of slots) X slot size

The two parameters number of slots and slot size determines the behavior of the cache

collision. A large slot size reduces internal collision, while a large number of slots reduces

the external collision. The product (number of slots x slot size) is the amount of space

left unused in each ELPS page.

Consider the two columns labeled as "with hashing" in table 7.10. Compared with

no hashing, the hashing scheme eliminates the sharp overhead increase of ELPS in the small

programs (qsd200 and queryO). Furthermore, various parameters for the hashing function

(columns (a) and (b)) make little difference on performance. Thus a small number of slots

and a small slot size can be chosen to minimize unused space.

Figure 7.9 graphs the arithmetic mean an the geometric mean of the overheads

with respect to page size. Because the page size of 4K is the saturation point (where all four

108 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

Table 7.11: Effect of ELPS Page Size on Overflow Frequency

number of overflows average overflow handling
time (in cycles)

Benchmark 256 512 1K 2K 4K 8K 256 512 1K 2K 4K 8K
ckt4 0 0 0 0 0 0
query 0 0 0 0 0 0
qsd200 10 4 1 0 0 0 22 22 31
chat 4395 1720 357 0 0 0 2 2 2
compiler - 141 26 4 0 0 14 26 39
tp3 - 375 129 52 21 7 11 15 19 23 40
boyer - - 1851 915 458 228 23 26 30 37

Table 7.12: Effect of ELPS Page Size on Internal Fragmentation

internal (between pages) fragmentation
Benchmark 256 512 1K 2K 4K 8K
ckt4 0 0 0 0 0 0
query 0 0 0 0 0 0
qsd200 6 2 0 0 0 0
chat 32363 14914 621 0 0 0
compiler 776 16 6 0 0
tp3 1145 542 81 34 4
boyer 316 220 104 32

slots in the 4-way associative cache set are filled), the overhead peaks at a page size of 4K.

This is also the reason for the sharp overhead increase when the page size increases from 2K

to 4K. For boyer and tp3, the overheads continue to decrease as page size increases, while

for all other programs, the overheads level off at page size of 4K or greater.

Another important measure of ELPS performance is the frequency of overflows.

Table 7.11 shows the number of overflows and the average overflow handling time for each of

the various page configurations. The number of overflows decreases rapidly as the page size

increases, as more task spaces can be captured in a page. The average overflow handling

time increases slightly as the page size increases, since these overflows are more likely to

request a new page. Due to the extremely fast overflow handling time (in tens of cycles),

the total time required to handle overflow contributes little to the overall execution time.

Internal fragmentation is the number of words left unused at the end of a page

because a structure does not fit on the existing page. Table 7.12 shows the cumulative in­

ternal fragmentation for the different page configurations. Internal fragmentation decreases

7.3. DISCUSSION 109

very rapidly as the page size increases, and thus is insignificant.

7 .2.4 Allocation and Deallocation Strategies

The implemented strategy of on-demand allocation and lazy deallocation performs

very well (as expected). For programs with a high degree of backtracking, lazy deallocation

is clearly superior to eager deallocation. However, for programs that have a very high space

usage, eager deallocation may help distribute the free space more efficiently. In general, the

dynamic nature of Prolog tasks makes it very difficult to predict stack usage. A reasonable

strategy is to retain one empty page while releasing the others to the free list. This one

page buffer would prevent performance degradation due to fluctuations at a page boundary.

7.3 Discussion

With the functionally correct execution of Prolog programs, we have shown the

feasibility of ELPS, a hybrid heap-stack mechanism designed to allow efficient sharing of

the global address space and efficient space reclamation. The heap style allocation of small

segments distributes the limited shared space to where it is needed most, and the stack

structure allows for fast space reclamation without the need for garbage collection in many

cases. ELPS solves the "sleeper task" problem of PPP, where tasks that have alternative

clauses for possible future backtracking tie up the task spaces allocated to them. By al­

locating only a small amount of space each time, millions more tasks may be created to

exploit the potential for parallelism. ELPS has been implemented on a simulated multi for

parallel execution of Prolog.

Since all ELPS pages have their starting addresses with the same lower order bits,

collision in the cache blocks can potentially be a serious problem. Fortunately, this problem

can be solved with a simple hashing scheme to start data storage on a page at various

offsets. A more complete solution is to design more intelligent caches for stacks such that:

(a) a stack push operation does not need to read the block in from memory, and (b) the

cache blocks of a task that has been killed should be invalidated.

The overhead of ELPS is 2% with hardware support and 11% with software only.

With a cache system, the overhead of ELPS is around 5% with hardware support, due to

some amount of block collisions in the cache. With software only, the overhead remains

110 CHAPTER 7. ELPS SIMULATION EXPERIMENTS AND RESULTS

at around 11% because the software check is internal to the processor (does not generate

cache or bus traffic) and the execution time is dominated by memory access times.

For optimal performance, the ELPS page size should be set a.t system configuration

time such that (a) it is smaller than the number of cache sets to reduce the frequency of

collision and cache flushes, and (b) it is sufficiently larger than the largest structure. ELPS

provides the memory management needed to keep up with the memory demand for parallel

execution, thus increasing the degree of potential parallelism. To obtain a high overall

speedup, proper scheduling and granularity control must be coupled with this potential for

a very large number of tasks.

In addition to parallel execution of Prolog, ELPS may be used a.s the memory

management scheme for very large scale shared memory multiprocessors which use the

multi as a building block. From this viewpoint, ELPS has the following advantages:

• Dynamic allocation and efficient utilization of the shared address space frees the pro­

grammer from the concern of memory management. The memory manager can enforce

locality by having multiple free-page-lists, one for each group of processors.

• Detection of overflow upon allocation of space on stack provides a. more robust system.

Some Prolog implementations that use static partitioning ha.s no provision for stack

overflow checking.

• The explicit links require no special hardware mechanism for address translation.

• By storing the links with the pages and not together in a. table, contention on memory

or cache block for different table entries is eliminated.

• By associating a task space with a. task and not with a processor, the scheduling of

tasks onto processors is more flexible and task migration is more efficient.

For more complete memory management, ELPS ma.y be integrated with a. garbage

collector to reclaim unused space within each page. In sequential execution of Prolog, most

objects do not survive the first iteration of garbage collection [TH88]. In parallel execution,

when a task terminates with no more alternative solutions, its entire space can be discarded.

Due to the memory usage nature and the highly dynamic life times of the parallel tasks, an

local garbage collector should do well in reclaiming unused space and not interfere with the

execution of other tasks. One possible approach is to collect only data. areas not shared by

7.3. DISCUSSION 111

other tasks. In the PPP model, this unsha.red area is the local data space used by a task

before it spawns any children.

112

Chapter 8

Aquarius-11: A Two-Tier Memory

Architecture

8.1 Introduction

In the previous chapter, we evaluated the space and time aspects of memory per­

formance of a shared memory bus based multiprocessor. In this chapter, we explore an

alternative memory architecture to increase memory bandwidth.

The bus is the simplest interconnection network that implements a "dance hall"

shared memory (figure 2.1). With caches local to each processor, this structure is called a

"multi" by Bell [Bel85] (figure 5.4). It can provide high performance at relatively low cost.

The caches are kept consistent by hardware protocols, thus freeing the programmer from

the concerns of managing the memory hierarchy details.

In a multi architecture, two types of memory interference can degrade memory

performance:

• Multiple access interference occurs when two or more processors need to access main

memory. The processors arbitrate for the bus and their memory accesses are serialized.

The processors remain idle while waiting for the memory operation to complete.

• Lock interference occurs when the bus is being locked up by a processor for an atomic

read-modify-write operation. Other accesses to memory are suspended until the bus

is released. Such an atomic operation is necessary to synchronize the processors that

are executing in parallel.

8.2. HIGH PERFORMANCE MEMORY ARCHITECTURES 113

As the number of processors is increased, the frequency of these memory interferences

increases and the bus becomes a more serious bottleneck.

In this chapter, we describe Aquarius-II, a multiprocessor in the "dance hall"

shared memory category. Aquarius-II contains two tiers of memory designed to reduce

memory interference and to increase the processor-memory bandwidth. The first tier, called

synchronization memory, is a multi with coherent caches, used to store synchronization

data such as locks and semaphores. The second tier, called high-bandwidth {HB) memory,

contains a high-bandwidth interconnection network to memory (such as a crossbar). There

are HB local caches for each processor, but they are much simpler than the snooping caches

of synchronization memory. The HB memory is used to store the bulk of the application

program's code and data, as well as the operating system.

8.2 High Performance Memory Architectures

For any architecture, the memory system is potentially a major bottleneck since

the access time of a large and economically feasible memory system is 3 to 5 times slower

than processor cycle time. This gap is much larger for supercomputers with very short cycle

time.

Previous studies [Smi82] have shown that cache memory is a cost effective way

to substantially improve performance. For example, the Convex's C-1 [Wa185], a Cray-15

like processor, achieves one fifth the performance of a Cray-15 [SA83] at one tenth of the

cost. It uses a large cache (64K bytes), a slower technology (CMOS), a slower memory, and

pipelining. The instruction and data caches in the Convex's C-1 play a key role in providing

performance even though memory is slow and the memory bandwidth is limited.

Various multiprocessor memory architectures have been employed to obtain high

memory bandwidth. Current high-speed multiprocessor systems often contain a fully con­

nected network called the crossbar. The hardware cost of a crossbar switch is proportional

to the square of the number of processors (assuming an equal number of memory modules).

Because of this, the crossbar is used primarily in systems with a small number of processors

(e.g., C.mmp and Burroughs B7700 [Sat80]). For a larger number of processors, a multistage

network (e.g., the Omega Net in Ultra computer and shuffle exchange in Cedar) is used to

reduce cost and to increase fault tolerance. These systems either do not employ caches due

to the problem of multiple cache coherency associated with the particular interconnection

114 CHAPTER 8. AQUARIUS-II: A TWO-TIER MEMORY ARCHITECTURE

Synchronization S
Memory"(

optiONJI

=:F=:;±=~I==f.t==J :U~"
High-Bandwidth

(HB) Memory high bandwidth
Interconnection netwotit

P-pi"'C88sor M-memory SC-snooplng cache C-<:ache

Figure 8.1: The Aquarius-11 Multiprocessor Architecture

network, or restrict the use of caches to read-only and non-shared read-write data. The

medium-speed multiprocessors, usually called super-minis, contain caches with hardware

coherency protocols. To keep the cost low, the caches are connected to a single bus. In this

case, the caches are more efficiently utilized, but the single bus connection to memory is

a major bottleneck as the number of cache-processor nodes connected to the shared bus is

increased.

8.3 The Aquarius-11 Architecture

To reduce memory interference and to have both fast synchronization accesses and

high-bandwidth data accesses, we propose a two-tier memory system which contains two

separate memory spaces: a synchronization memory and high-bandwidth (HB) memory.

8.3.1 Synchronization memory

The synchronization memory is the upper tier shown in figure 8.1. The synchro­

nization caches are connected to synchronization memory via a bus. There have been a. num­

ber of proposals for multiprocessor cache coherency for a single bus [Goo83, AP84, KEW*85]

using a variety of protocols, all of which require monitoring the bus and broadcasting the

8.3. THE AQUARIUS-II ARCHITECTURE 115

data to caches and to memory. Bitar [BD86] has extended Goodman's snooping cache for

more efficient locking. Bitar's scheme employs a cache lock state that reduces traffic on

the bus, in addition to having one less memory access than the conventional test-and-set

scheme for scalars. This scheme requires 3 state bits associated with each cache block and

allow for cache-to-cache transfers for update or invalidate. Such a scheme is vital to fast

synchronization accesses.

The synchronization memory is used for storing synchronization information and

status information. Synchronization information consists of event flags, lock variables, and

semaphore variables. The status information contains the status of resources such as pro­

cessors and buffers, control flags such as modify, reference, and valid used in caches, and

mail boxes. The separation of memory results in fast access to synchronizing information

since memory requests need not wait for the completion of a long data transfer.

The bus monitoring and broadcasting mechanisms needed to implement fully dy­

namic cache coherency protocols requires complex hardware, and the single shared bus to

synchronization memory can be a serious bottleneck. The smaller sizes of the synchroniza­

tion memory require simpler hardware circuitry (for cache and memory designs) that result

in lower design cost and faster address decoding. Since synchronization memory is used

only for synchronization and status information, it should be a small fraction of the total

memory address space (less than 10%).

8.3.2 High-bandwidth Memory

The vast majority of the memory space (90%) is in the second of the two tier

memory, called the high-bandwidth memory. This second tier provides a very high processor­

memory bandwidth by using a high-bandwidth interconnection network to connect the

processors to the memory modules. For a multiprocessor system with a small number (16

or less) of processors, a crossbar is most appropriate since it provides the highest possible

bandwidth with reasonable cost. The crossbar switch should contain an arbitration unit that

resolves conflicting memory requests to the same memory bank in a fair manner (starvation

free) [Sri88]. For systems with higher number of processors, a lower performance but less

expensive interconnection network such as the Omega network [Gea83] is more suitable.

To further enhance the performance of the high-bandwidth memory, a cache is

placed in between the processor and the interconnection network. These caches greatly

116 CHAPTER 8. AQUARIUS-II: A TWO-TIER MEMORY ARCHITECTURE

P-processor C-cache M-memory

Figure 8.2: Multiprocessor Architecture with Caches at Each Crossbar Switchpoint

increases the complexity of the memory system due to the cache coherency problem. In

order to keep the crossbar switch as simple as possible, we have chosen to put a cache at

each processor (figure 8.1) instead of a cache at each switch point of the crossbar, as shown

in figure 8.2. The topology of figure 8.2 is equivalent to having a very high number of buses,

each of which having the complexity of a synchronization bus.

8.3.3 High-Bandwidth Memory Cache Coherency

A number of solutions have been considered for the cache coherency problem for

the high-bandwidth memory. The goal is to avoid the hardware cost and complexity of the

full snooping and cache-to-cache transfer protocols. In this section, two such schemes are

discussed: software scheme by restricted caching and hardware broadcast for invalidation.

Restricted Caching

The simplest way to resolve the cache coherency problem is to avoid it completely

by restricting caching to read-only and non-shared read-write data. Software arrangement

of data space, combined with some hardware support in the individual caches, is done to

make sure copies of a writable cache block is not allowed in more than one cache at any

8.3. THE AQUARIUS-II ARCHITECTURE 117

given time.

This restricted caching scheme, called singly cacheable protoco~ can be imple­

mented with each cache having a cacheable address table (using associative memory) which

contains the address ranges that are cacheable by that cache. If a memory block is cacheable

by a particular cache, when a cache miss occurs, that data block is fetched from memory

and is stored in the cache. Subsequent reads to this block gets data directly from the cache,

and subsequent writes may either write-back to cache only (ifthe data is local to a task), or

write-through to both the cache and the memory (if it is potentially used by other tasks).

If a memory block is non-cacheable by a particular cache, it is never stored in the cache

and all references to it require going to the memory.

The cacheable address table in each cache contain the address ranges for the code

space (read-only) and the address ranges of the local data spaces of the tasks that are

assigned to the processor. The scheduler assigns a task to a processor, and the task is to

be executed by that same processor until termination. When a task is moved from one

processor to another (task migration), the cache in the old processor must be flushed, and

the task's local data space address ranges must be moved from the old processor's cacheable

address table into the new processor's cacheable address table.

The main advantage of this restrictive caching scheme is that no communication

among the caches is necessary, avoiding the need for complex circuitry for bus monitoring

and broadcasting. Furthermore, the caches are completely independent of each other, and do

not interrupt each other for invalidation or update. For some applications, these advantages

may be overshadowed by the performance penalty of higher miss ratio due to non-cacheable

blocks and more accesses to memory are necessary for the write-throughs. However, the

crossbar provides some relief by having a very high processor-to-memory bandwidth to

handle this memory traffic.

Broadcast for Invalidation

To increase the cache hit rate, the HB caches can be extended to allow caching of

all memory blocks. Instead of the full coherency mechanisms used for the synchronization

caches, simpler invalidation buses can be used to keep the HB caches consistent. Upon a

cache read miss, the data block is loaded into the cache from memory. When this data

block is modified, the cache broadcasts this write by putting the address of the modified

118 CHAPTER 8. AQUARIUS-II: A TWO-TIER MEMORY ARCHITECTURE

block onto the invalidation bus. The other caches constantly monitor this invalidation bus

for an address in their own directories. If a cache contains a copy of the data block, it

will invalidate its own copy, and its next access to this data block has to get data from

memory. If the cache does not contain a copy of the data block, its normal operation is

uninterrupted by the traffic on the invalidation bus. Furthermore, invalidation involves only

clearing the valid bit for the block in the cache directory, and may be done concurrently

with some other cache accesses which do not alter the directory (assuming 2 read ports for

the cache directory). Bus traffic can be reduced by having a private cache state for cache

blocks owned by only one processor. No broadcast for invalidation is needed for writes to

private cache blocks.

The separation of the broadcast mechanism from the crossbar keep the crossbar

switches simple while allowing a flexible number of invalidation buses to be used. Each

invalidation bus is much simpler than the synchronization bus since it is only for the address,

whereas the synchronization bus is for both address and data. Each invalidation bus is

used for a different address range, so a simple demultiplexer can be used to choose the

appropriate bus for the address to be broadcasted. If there are multiple requests by the

caches to broadcast on the same invalidation bus, these caches must arbitrate for the bus in

the same way that the synchronization caches arbitrate for the synchronization bus. With

a greater number of in validation buses, each bus will cover a smaller address range, thus

resulting in less probable contention for any given bus. Each invalidation bus requires a bus

monitor unit in each of the caches to monitor traffic on the invalidation line.

8.4 Parallel Execution of Prolog

Studies by Eggers and Katz [EK87] analyzed the memory reference patterns of

write shared data in several parallel applications coded in FORTRAN. Their trace simu­

lation results show very small percentages of write shared data (less than 2%). For the

two-tier memory system, this would mean very low demand on synchronization memory

and thus the one synchronization bus is sufficient to support this traffic without much con­

tention. We wish to analyze a more complex programming paradigm to evaluate how it

can be supported architecturally with the two-tier memory model. Our language of choice

is Prolog. In this section, we present the usage for the two-tier memory system for par­

allel execution of Prolog. In particular, the PPP execution model [Fag87] is analyzed for

8.4. PARALLEL EXECUTION OF PROLOG 119

implementation on the Aquarius-IT.

8. 4.1 Synchronization Characteristics

Prolog has some unique features compared to the languages of other programming

paradigms such as Lisp (functional programming) or FORTRAN (imperative programming).

Prolog variables are single assignment, which once given a value will never be changed. This

is very suitable for parallel processing since a variable that has been written becomes read­

only, and no synchronization for writing is required. This can be characterized as single

writer, multiple readers, and read-only after write.

Except for the global database in Prolog which resides in the code space, all Prolog

variables are local to a Prolog clause and are explicitly passed from one procedure to another.

This simplifies the task of detecting the communication between parallel tasks in which the

procedures are executed. For the rest of this section, we review the PPP execution model

that was previously described in section 5.4.4 (Task Kernel Module).

The PPP execution model contains two kinds of tasks: AND tasks and OR tasks.

Each task has a task control block, called a task table entry, which contains the state of the

task, base addresses of the task data space, and various links to the parent task. Each task

also has its own data space for private and read-shared data.

OR-tasks are used to execute the multiple clauses of a procedure. Each OR­

task contains its own binding area (called a hash window) to store the variable bindings

that would conflict with other OR tasks. These bindings are seen by the task's parent by

means of dynamic linking of the hash windows. Even though the clauses of a procedure

are executed in parallel and out of order, the results obtained from them are serialized to

maintain standard Prolog semantics.

AND tasks are used for executing AND-parallel subgoals that are independent

of each other; that is, they cannot attempt to bind the same variable during execution.

Subgoal independence is determined statically, by programmer's annotations and/or by

data :fiow analysis (such as static data dependency analysis (SDDA) [Cha85, Cit88]; the

general technique is known as abstract interpretation [BJCD87, WHD88]). The AND tasks

do not have their own hash windows, but instead they share the hash window of their closest

OR ancestor.

The task creation, context switching, and termination tasks are distributed among

120 CHAPTER 8. AQUARIUS-II: A TWO-TIER MEMORY ARCHITECTURE

Physical Memory ArchitectJUe

Logical DaJa Space

Figure 8.3: Mapping of the PPP Storage Model onto the Two-Tier Memory System

the processors, synchronized by mutually exclusive accesses to shared queues. A processor

executing a task performs all the tasks needed to spawn a child task, from reserving task

space in memory to writing out the new task state and putting it in a ready-queue. An

idle processor removes a runnable task from a ready-queue for execution. A terminating

task frees up its own task space by putting the task space in a free-task-list. A task goes

to sleep by swapping itself out of the processor, and gets awakened by another task moving

it into the ready-task-queue. The tasks communicate via synchronized accesses to shared

memory.

8.4.2 Mapping of PPP onto Aquarius-11

Figure 8.3 shows the mapping of the code and data spaces of the PPP Execution

model onto the two-tier memory system of Aquarius-H. The task tables, the hash windows

and the global heap (containing join tables and children task identifiers) are stored in the

synchronization memory, either because these data are shared writable and require locking

or because they are modified often and need the cache to cache data transfer capability of

the synchronization bus.

On the other hand, the code space and the local data space reside in the high­

bandwidth crossbar memory. The code space is for the most part read-only, and the local

data space is mostly locally writable by the owner task, and read shared by other tasks.

8.5. CHAPTER SUMMARY 121

8.5 Chapter Summary

In this chapter, we described the two-tier memory architecture of the Aquarius-II,

designed for both fast accesses to synchronization data and high memory bandwidth. The

first tier, called synchronization memory, is a multi memory architecture, with caches local

to each processor and connected to memory via a single bus. The caches are kept consistent

using hardware coherency protocols. The second tier, called high bandwidth (HB) memory,

contains caches local to each processor connected to memory via a crossbar. Two general

coherency protocols have been proposed to keep the crossbar caches consistent: restricted

caching and broadcast for invalidation. Restricted caching is done primarily in software,

while the broadcast scheme needs an additional invalidation bus and bus monitoring circuit.

122

Chapter 9

Aquarius-11 Simulation Results

How much performance improvement can be obtained by separating the synchro­

nization data from others? This can be answered by evaluating the bus traffic and the

synchronization behavior of parallel execution. This chapter provides the simulation results

of the two tier memory in comparison with the single bus memory.

9.1 Simulation Parameters

To compare the performance of a two-tier memory architecture to a single bus

cache coherent system, the NuSim simulator (described in chapter 5) is set up to simulate

two such systems. The multiprocessors are configured to 8 processors. The cache of the

Single Bus (SB) memory is 64 Kbyte, 4-way associative, with 16 byte blocks. The relative

speed of the bus is set at a (fast) 1 processor cycle for arbitration and two cycles for

broadcasting. Main memory is also set to be very fast, requiring 2 cycles for first byte and

1 cycle for subsequent bytes in a block.

The Two-Tier system consists of the synchronization bus (SB) memory, which is

identical to the Single Bus system above, plus the high bandwidth (HB) memory containing

the crossbar. A memory request from the processor is multiplexed into one of the two tiers

of memory (simultaneous access to both tiers is not allowed). Lock/unlock accesses and

read/write accesses to shared data structures are channeled into the SB memory, while all

other memory accesses are channeled into the HB memory. Two simplifying assumptions

are made regarding the crossbar: no memory bank conflict and single cycle access delay.

These assumptions are made to study the maximum improvement potential of the two-tier

9.2. MEMORY ACCESS BEHAVIOR 123

Table 9.1: Access Ratios for Shared and Local Memory Areas

Percentage over all types of accesses
Benchmark code local data shared data locks

count time count time count time count time
boyer 42 22 42 33 13 37 3 9
chat 46 50 54 50 0* o· 0* 0*

ckt4 31 16 44 38 20 34 5 12
compiler 28 33 43 42 24 21 4 4

qsd200 45 21 43 34 9 36 2 10

queens6 42 22 48 35 5 18 1 5

query 45 27 28 16 12 22 1 4
tp3 51 41 42 41 6 15 1 3

average II 41 29 1 43 36 1 n 23 1 2 6

• close to 0, much less than 1

Table 9.2: Average Access Time for Shared and Local Memory Areas

Average access time (in cycles)
Benchmark code local data shared data locks
boyer 1.7 2.5 9.3 10.9
chat 1.2 1.1 7.5 6.9
ckt4 1.0 1.8 3.4 5.0
compiler 1.5 1.2 1.1 1.1
qsd200 1.2 2.0 9.6 12.9
queens6 1.1 1.5 7.1 12.3
query 1.5 1.4 4.5 9.8
tp3 1.2 1.4 3.9 4.5

average II 1.3 1.6 5.8 7.9

architecture over the single bus architecture.

Eight Prolog benchmark programs are chosen for our simulation study. These

programs exhibit a variety of parallelism characteristics and locking behavior. Table 1. 7 (in

chapter 7) showed the list of benchmarks, their static code sizes, and a brief explanation

for each.

9.2 Memory Access Behavior

To observe the memory behavior of parallel execution of Prolog, the benchmark

programs were run on the single bus system. Table 9.1 shows the access ratios for the various

124

!50

40

percentage
over all 30

accesses

20

10

CHAPTER 9. AQUARIUS-II SIMULATION RESULTS

code local data shared data

1::::::::::=:=:1 count

• time

locks

Figure 9.1: Average Access Percentages of Shared and Local Memory Areas

shared and local memory areas while table 9.2 shows the average access time of accesses to

each memory area. Count is the number of accesses and time is the access time required.

The values in table 9.1 represent the percentage of accesses for that area over all areas. For

example, 42% of the memory accesses in boyer are to the code area, but they require only

22% of the total memory access time. On the average, code access is frequent and fast (41%

of count, 29% of time, and 1.3 cycles per access). This is because code is read only and

may be reused often (in the case of recursive calls), resulting in better cache performance.

Compared to code access, local data access is a little more frequent (43% count) and a

little slower {1.6 cycles) while shared data access is much less frequent (11% count) and

much slower (5.8 cycles). Lock access is the least frequent (2% count) and the slowest

(7.9 cycles). The access count and the access time for locks depend on the synchronization

needs of the programs. Ckt4 requires frequent communication among parallel tasks that

explore different circuit designs, while the chat parser has tasks that operate on independent

sentences, requiring little communication. Compiler shows an interesting behavior in that

the average access time for shared data and locks is only 1.1 cycles. This is because the

shared data is the very large block of object code generated by the compiler. Access to this

block is very localized, with each task contributing a small portion to make up the whole

block. Block copying is very fast and has high cache hit ratios.

9.3. EXECUTION TIME OF SINGLE BUS VS. TWO TIER 125

Table 9.3: Execution Time and Bus Utilization of Single Bus vs. Two Tier

cycles speedup bus utilization

Benchmark single bus two tier ~ single bus two tier %change

boyer 74016 58002 1.28 0.75 0.58 -23

chat 2353059 2271477 1.04 0.09 0.00 -100

ckt4 1866705 1656694 1.13 0.40 0.29 -27

compiler 1261500 1092355 1.15 0.19 0.03 -84

qsd200 97048 80502 1.21 0.50 0.37 -26

queens6 218178 188748 1.16 0.72 0.66 -8

query 63586 55417 1.15 0.76 0.64 -16

tp3 295042 257045 1.15 0.16 0.08 -50

average II 1.16 0.45 0.33 -26

The bar graphs in figure 9.1 show the relative frequency of accesses among the

four memory areas and the relative percentages of time required. For code and local data,

the time bar is below the count bar. For shared data, the time bar is twice that of the count

bar. For locks, this ratio is three. While locks make up from much less than 1% to 5% of

the access count, they can take up to 12% of the access time. More importantly, they can

hold up the bus, thus blocking out other unrelated accesses (particularly those accesses to

local data). The two tier memory resolves this problem by diverting local data accesses to

the HB memory.

9.3 Execution Time of Single Bus vs. Two Tier

Table 9.9 compares the execution time and the bus utilization of the single bus

with those of the two tier memory. The speedup column shows the ratios of single bus

execution time over two tier execution time. With code and local data accesses diverted

to a different path, execution on the two tier memory shows modest speedups of 1.04X to

1.28X (1.16X on the average). As expected, those programs with the highest percentages

of lock accesses show the greatest speedups. The (bus utilization) single bus column shows

the potential bottleneck of the single bus memory, while the two tier column shows the bus

utilization due to shared data and locks only. The last column shows the percentage of

change (decrease) in bus utilization when the two tier memory is employed. The percentage

of bus accesses due to code and local data range from only 8% for queens6 to nearly 100%

for chat. The average decrease in bus utilization is 26%. This explains the long access times

126 CHAPTER 9. AQUARIUS-II SIMULATION RESULTS

for shared data and locks compared to code and local data. Programs that have a high

percentage of bus utilization due to code and shared data benefit the most with the two

tier memory.

9.4 Parallel Execution Behavior

Figures 9.2 and 9.3 show the run times of the tasks generated in the execution of

two programs: quicksort and queens6. In each graph, the vertical coordinate contains the

task IDs, ranging from 0 to 63, and the horizontal coordinate contains the time in units of

processor cycles. Each continuous horizontal segment represents a period of time in which

the task is being run in a processor. There are at most 8 tasks executed at any given time,

one in each processor. The other tasks wait in the ready queue for idle processors.

The graphs of the two benchmarks are selected to show varying behavior of parallel

execution: quicksort running in AND-parallel and queens6 running in OR-parallel. As

shown in figure 9.2, quicksort behaves very regularly, with each task spawning one additional

task to work on one of two partitions, while the parent task continues execution with the

other partition. The join operation occurs after each of the subpartitions has been sorted.

The long segment for task 0 starting at time 0 indicates that a large chunk of time is spent

in sequential execution, and that is a deterrent to overall speed up when the number of

processors is increased. With 8 processors, parallel execution on single bus results in a

2.1X speed up over sequential execution. Parallel execution on the tw~tier results in 2.6X

speed up, approaching the theoretical limit of 3X speed up for a balanced tree (log 28, for 8

processors).

On the other hand, queens6 executes in a quite random manner, as shown in

figure 9.3. The program searches for board positions to place non-attacking queens. It

backtracks to alternative search paths when the current path fails to give a solution. Space

and IDs of terminated tasks are reused for new tasks. There is a high degree of parallelism

in queens-6, but the overall speed up is limited by the number of processors, the contention

on the single bus and the adherence to standard Prolog semantics (ordering the returned

solutions of the OR-tasks from left to right). With 8 processors, parallel execution on single

bus is 4X faster than sequential execution, while parallel execution on tw~tier is 4.6X faster

than sequential execution.

For each benchmark, the patterns of parallel execution on single bus and on two

~

c•-u--..1
task II

• ..
110

40

• .. start

to 1
••

II

c•-n--..
task II

I ..
110

40

• .. start

lO 1
·~ II

-

l.q l MD-oarallal n..~ r-~~~1 - busl

qsd200A.trt

-
/

/
/ _:___

/ .::=: / =-.,. =
/
/ =-

/
/ =

/ -=-/
/ -=-/

/ end /
/

/

- ~-=1 /
/

/

10 .. • 40 110 .. 10 .. 90 lOG

(b) .IIID-pllrall•l Quicksort. (two tiar)

qsd200A.trt

/ / z:
/ --/ -=-----/ _-=-

/
~ /

/ ~
/ r-/

/

~-/
/

/ -=-- end
/

-~-1
/ -/

/
/

- -- -
10 .. • ... 110 .. 70 .. ,. lOG

Figure 9.2: Task Run Time Behavior of Single Bus vs. Two Tier (for Quicksort)

------ ----------· ---- ------------

•• tol

• • • s.ol

co
~

~
~
t-1
t-1

~
~
til
()
<::
~
~
a,

.~
>

~

......

"' -..1

(a) OR-parallel Queens6 (single bus)
CloH)(.... """n')
task II qut>ens60.trt

r--o
60

-- - -=.--.- -"":....
110 ~ -... ====-- -
40

~

= ~
310

J start --- end -=

!-~ 1t
-,___
- -- - ---- - ------- -! -

* ·-.::=-c==z ---

' • te t. to I do 100 140 uo teo

(b) OR-.-rall•l ou-ts6 (tllo tier)
cl-I(Hw-..wl
t.Mkll qut>t>ns60.trt

60'

110

441

310

..
11

~ - -=-
-=---=-- - ... --- --..

-..,..,__ ___ _
':... --a --

start - - _ __.__ _ =----~------- -- --end

l
- =--- -==- ~ - - -__ 1

- - - - - - '-- -- - -- ~- . - -- -- ---- ---- ~- :- --:.__----- _-.
-~ - --...:.- ...::r- -~-- -"~!:..- - -=- --
~ ---

II 1!0 40 60 .. 100 1.10 60 110

too

too

Figure 9.3: Task Run Time Behavior of Single Bus vs. Two Tier (for Queens6)

Z20

Z20

e • lOJ

-+ 0 • 103

....
~
00

n
~ .,
~
~
!0

>­
.0

~

~
~

~
~
>­
~
0
~
~
t_'!j
til

~
~

...

9.5. CROSSBAR CACHE PERFORMANCE 129

Table 9 4: High Bandwidth Memory Access Locality

Percentage over all accesses
internal external est. max

Benchmark read write read write hit ratio
boyer 69.3 20.9 7.6 2.2 90.2
chat 68.1 23.2 6.2 2.5 91.3
ckt4 69.6 15.0 9.8 5.6 84.6
compiler 66.5 22.1 8.9 2.5 88.6
qsd200 62.8 16.9 9.9 10.4 79.7
queens6 74.4 19.7 4.7 1.2 94.1
query 81.5 7.0 9.1 2.4 88.5
tp3 61.5 12.2 15.5 10.8 73.7

average 11 69.2 11.1 1 9.o 4.7 1 86.3

tier memory are very similar. However, they differ in the starting times and lengths of

execution. The dashed diagonal lines in figure 9.2 show the slopes of the starting execution

times of new tasks. Nate that the slope of the line in figure (b) (two tier) is slightly steeper

than that of figure (a) (single bus). By reducing memory contention due to locks and shared

data, the two-tier memory allows faster task creation and shorter execution times, resulting

in overall faster execution.

9.5 Crossbar Cache Performance

In section 8.3.3, we discussed two schemes for keeping the caches of the high­

bandwidth memory consistent. In this section, we evaluate the performance of these

schemes.

9.5.1 Restricted Caching

Each AND-task or OR-task has a local task space. A memory access is internal

if the accessed address is inside this local task space; otherwise, the memory access is

external. Under the restricted caching scheme, only code and internal accesses are cached .

Other accesses result in cache misses and must obtain data from memory, via the crossbar.

Thus, a higher percentage of internal accesses would result in a better cache hit ratio.

Table 9 ... shows a breakdown of the accesses in four categories: internal read,

internal write, external read, and external write. The internal read column contains code

130 CHAPTER 9. AQUARIUS-ll SIMULATION RESULTS

and internal local data accesses. The percentage of internal read varies from 61.5% to 81.5%

and the percentage of internal write varies from 7.0% to 23.2%. This depends on the nature

of the benchmark. For example in quicksort, both external read and external write make up

high access percentages. This is because the two partitioned sublists to be sorted in parallel

are stored in the parent's local space when passed to the children, thus reads to the these

original sublists are external. After the sublists are sorted, the parent task does an external

write when it links the two sorted sublists stored in the children's local space. Queens6

shows the other extreme behavior: the tasks that explore the board positions mostly read

and write in its own local space.

On the average, internal read makes up the vast majority (69.2%) of all accesses,

followed by internal write at 17.1 %. Both types of internal accesses together make up an

average of 86.3% (shown in the last column). This number is also the maximum hit ratio

obtainable for the crossbar caches. The actual hit ratio will be somewhat lower, depending

on the cache parameters such as cache size, block size, and associativity. The degradation

in performance due to a low hit ratio of restricted caching is offset by the high bandwidth of

crossbar. Consider the following back-of-the-envelope calculations to compare performance

of single bus versus crossbar. The approximate bus bandwidth can be computed as follows:

b b d
.d h _ width of data transfer (in bytes)

us an wt t - d f . (. d) ata trans er tzme m nanosecon s

With the same width of data transfer and data transfer time for the crossbar, the maximum

crossbar bandwidth is P times greater than bus bandwidth, where P is the number of

processors, assuming that there are more memory modules than processors and that there

are no bank conflict. Thus, the miss ratio of the crossbar cache can be up to P times

higher than that of the single bus cache to provide the same performance. In our simulation

example, P is 8, the average cache miss ratio is 3.9% for full caching and 13.7% for restricted

caching. Thus maximum potential of 8X increase in bandwidth by using a crossbar is

sufficient to offset the 3.5X increase in miss ratio.

9.5.2 Broadcast for Invalidation

In section 8.3.3, broadcast for invalidation was proposed as an alternative to re­

stricted caching. This scheme requires an invalidation bus connecting the caches together

and a bus monitor built into each cache (a simple bus snoop mechanism). When the pro­

cessor writes to a cache block which it does not have exclusive ownership, the address of

9.5. CROSSBAR CACHE PERFORMANCE 131

Table 9.5: Write Percentage of Local Data

number of number of write ratio
Benchmark reads & writes writes (%)
boyer 48223 22340 46.3

chat 517325 250403 48.4

ckt4 193986 65504 33.8

compiler 571617 245296 42.9

qsd200 54997 30816 56.0

queens6 301510 118270 39.2

query 40346 9940 24.6

tp3 70818 36024 50.9

average II 42.8

the block is broadcasted on the invalidation bus and copies of the block in other caches are

invalidated. In this section, we evaluate the performance of this broadcast scheme.

Trace simulation is used to evaluate the crossbar cache performance. The cache

trace simulator used is a multiprocessor extension of Dinero III, a uniprocessor cache sim­

ulator developed by Hill (Hil87]. Traces of local data accesses are collected during parallel

execution on NuSim, in a four-tuple of (read/write, address, processor ID, timestamp). The

traces are sorted in the order of the time stamps and fed into the multiple caches.

In general, trace simulation has limited usefulness for multiprocessor cache eval­

uation (Bit89b]. In our case, trace simulation provides a good approximation of true per­

formance due to the following conditions: (1) local data traces have little sharing among

them, and (2) no synchronization is needed for local data accesses.

Table 9.5 shows the number of cache accesses and the percentage of cache writes.

For boyer and tp3, only the period of active parallel execution is captured. During the other

times, the execution is practically sequential and is uninteresting for multiprocessor cache

study. Due to limited disk space to store the traces and limited processing power available

for simulation, only the first half million accesses are captured for compiler and chat. A

few simulation runs with larger traces for these two programs indicate that the half million

traces are sufficiently indicative of the worst case performance. Other programs are run to

completion. On the average, writes make up 42.8% of all accesses to local data (reads make

up the other 57.2%). Compared to other languages, this fairly high percentage of writes is

due to the nature of Prolog and the use of structure copying by the WAM model.

Table 9.6 shows the performance of the broadcast for invalidation scheme. The

• I

132 CHAPTER 9. AQUARIUS-ll SIMULATION RESULTS

Table 9.6: Performance of Broadcast for Invalidation Coherency Scheme

restricted broadcast for in validation
caching
hit ratio hit ratio number of number of broadcast

Benchmark (%) (%) writes broadcasts ratio(%)
boyer 90.2 95.6 22345 320 1.4
chat 91.3 97.5 258834 9 0.0
ckt4 84.6 97.5 65979 6443 9.8
compiler 88.6 97.7 217879 146 0.1
qsd200 79.7 96.9 31465 106 0.3
queens6 94.1 98.9 121207 1785 1.5
query 88.5 97.8 9993 45 0.5
tp3 73.7 97.3 36244 131 0.4

average II 86.3 97.4 1.8

restricted caching hit ratio column is duplicated from table 9.4. The next four columns

present performance measures for the broadcast scheme. Overall, broadcast for invalida­

tion yields a much higher hit ratio than restricted caching. More importantly, it supports

data sharing among tasks more efficiently by being relatively insensitive to internal versus

external access. The hit ratio column of the broadcast scheme contains the best obtainable

hit ratios for direct mapped caches with sizes ranging from 4K to 256K bytes. For most

programs, the hit ratio peaks at 32K or 64K; for some, the hit ratio continues to increase

slightly beyond 32K. The average hit ratio of a 2-way associative cache is 97.6%, which is

0.2 percentage point higher than that of a direct mapped cache of the same size. Overall

for caches of size 32K or larger, 4-way associativity yields no better hit ratio than 2-way

associativity.

The broadcast ratio provides a measure for the degree of read sharing and task

migration (recall that when a processor writes to a cache, that cache broadcasts an invalidate

signal on the bus if it does not have exclusive ownership, i.e., one or more other caches

contain copies of the block). The small broadcast ratios (most less than 2%) indicate that

there is little sharing. One exception is ckt4, which has a broadcast ratio of 9.8%. In this

case, ckt4 contains many tasks that terminate quickly, and the old task spaces are reused

for the newly created tasks. Since the scheduling is quite random, a new task may get

picked up by a different processor (similar to task migration), and the task space in the

old processor's cache is invalidated. The extremely small broadcast ratios indicate that one

invalidation bus should be sufficient to handle the broadcast traffic.

9.6. DISCUSSION 133

9.6 Discussion

In the previous chapter, we described the Aquarius-IT multiprocessor system with

the two-tier memory architecture, designed to reduce lock contention and provide very high

processor to memory bandwidth. In this chapter, we have presented the simulation results

of parallel execution of Prolog on the Aquarius-H.

Although accesses to write-shared data and locks make up only 13% of the total

number of accesses, they account for 29% of the total access time. With other coherency

protocols which provide less efficient locking than the cache lock state protocol, the access

time is even worse. By separating accesses to write-shared data and locks from accesses

to code and other read-shared data, bus contention and bus traffic can greatly be reduced.

Access time can be further improved by providing high bandwidth to memory using a

crossbar. The two-tier memory architecture of the Aquarius-IT provides an average speedup

of 1.16X; as expected, programs with a high degree of synchronization benefit most from

the two-tier memory. In addition to the degree of parallelism that exists in the algorithm,

the speedup depends heavily on the scheduler to maximize the hit ratios of the crossbar

caches, and on the memory manager to minimize crossbar memory bank conflicts.

With respect to coherency for the crossbar caches, restricted caching results in

relatively low hit ratio (86.3% on average). Fortunately, the high bandwidth of the crossbar

makes it comparable with unrestricted, full snooping schemes on single bus. Unfortunately,

it is extremely sensitive to the degree of read sharing among the tasks and task migration.

Broadcast for invalidation provides a more complete solution to the coherency problem.

The measured average hit ratio of 97.4% is much better than that of restricted caching, and

the scheme is more suitable for task migration and data sharing. If the scheduler takes into

account the previous processor that executes a task, it can reduce task migration and thus

greatly increase the hit ratio.

The Aquarius-11 may also be used for programming paradigms other than logic

programming. Its shared, high bandwidth memory architecture should make it suitable for

memory intensive applications that also require a high degree of synchronization accesses

during parallel execution. The Aquarius-11 may be used for a hybrid imperative/logic

programming paradigm, such as a C program invoking Prolog routines for symbolic com­

putation.

134

Chapter 10

Conclusion

10.1 Summary and Contributions

In this dissertation, the main focus has been on space distribution for a vast number

of parallel tasks executing in a shared memory multiprocessor. A new shared memory

multiprocessor has also been proposed to increase memory bandwidth and to reduce bus

contention due to synchronization. The contributions of this dissertation are as follows:

• A hybrid heap-stack scheme, called ELPS (Explicitly Linked Paging Stack), was pro­

posed for managing a globally shared space for parallel execution of Prolog.

The dynamic allocation strategy of ELPS supports efficient sharing of global space,

thus allowing a very large number of tasks to be created for exploiting the full paral­

lelism potential (as described in section 7.2.2). The obtainable speedup is dependent

on the scheduler of the execution model. With hardware support, ELPS incurs an

execution time overhead of 2% for a single cycle memory system. When caches are

taken into consideration, ELPS overhead increases to 5% due to collision of the blocks

in the cache. A hashing scheme was used to greatly reduce the collision. With soft­

ware only (no hardware support), the overhead of ELPS is less than 11% on average,

including the effects of cache collisions.

• A shared memory multiprocessor, called Aquarius ll, was proposed for fast synchro­

nization and high memory bandwidth.

The memory architecture contains two tiers: the upper tier (called synchronization

memory) has local caches connected to memory via a bus and the lower tier (called

..

10.2. FUTURE WORK 135

high bandwidth memory) has local caches connected to memory via a crossbar. This

architecture provides an average speed up of 1.16X by reducing contention on the

bus and by providing high bandwidth to memory. Programs with a high degree of

synchronization benefit most from such an architecture. Two coherency protocols

for crossbar caches were evaluated. Compared with restricted caching, the broadcast

for invalidation scheme provides much better hit ratios (97.4% versus 86.3% on av­

erage). More importantly, the broadcast scheme provides more efficient support for

data sharing and task migration.

• A flexible event-driven simulator, called NuSim, was developed to simulate the mul­

tiprocessor system at various levels.

The modules in the simulator represent the parallel execution model, the processor

(and its microcode), and the memory system. The memory system includes the cache

coherency protocol. The features of NuSim include multi-level debugging and the ca­

pability to execute large benchmarks. This simulator was instrumental in evaluating

the performance of ELPS and Aquarius-H.

10.2 Future Work

This dissertation has provided valuable insights into the tradeoff's of a dynamic

allocation scheme as an alternative to other approaches. Complete memory management

for parallel execution should include a combination of approaches. Future work in memory

management can be extended to include the following:

• reduction of ELPS 01Jerhead.

With the simple hashing scheme described in section 7.2.3, collisions in the cache

blocks are less frequent, resulting in an average of 5% overhead. With a more careful

mapping of the pages, this overhead can be reduced to 2% (when no caches are used)

or even less with improved scheduling. This overhead reduction is especially important

for newer execution models of Prolog, in which the sequential engine is more efficient

than the WAM.

• garbage collection.

A local garbage collection scheme which garbage collects only sections of data known

to be unshared should do well in reclaiming unused space and should not interfere

136 CHAPTER 10. CONCLUSION

with other busy processors. A new ELPS page can be quickly allocated should the

current space overflows even after garbage collection.

• variable ELPS page size.

For the chosen benchmark set, the overflow frequency and overflow handling time

are insignificant. Should this become a problem, the ELPS page size could be dou­

bled for each time a stack overflows. However, the advantage of reduced overflow

frequency may not be sufficient to overcome the disadvantages of the extra overhead

for bookkeeping variable sized pages and the space left unused in a large page.

• multiple free page lists.

As the overflow frequency increases, the single free page list becomes a bottleneck.

Multiple lists may be kept to reduce this bottleneck and to increase the locality of the

pages with respect to a processor.

• improved scheduling.

By taking into account the processor that previously executes a given task, the sched­

uler can keep a task local to a processor as much as possible to increase better cache

performance. Furthermore, if the scheduler can provide an approximation on the size

and nature of space usage by a task, more appropriate memory management measures

can be taken (e.g., variable page size, incremental garbage collection).

• virtual memory.

In this dissertation, ELPS is considered to be implemented on a system with no

virtual memory. When ELPS is implemented on top of virtual memory, the factors to

be considered include: ELPS page size, bookkeeping strategy and allocation strategy.

The ELPS page size should be a multiple of a virtual page (and hence a multiple of

a physical page frame), since much of the space in a page may be left unused. The

ELPS free page list maintenance and page allocation should be done to minimize the

number of page faults (this implies that pages should be reused as much as possible).

The work on the Aquarius II presented in this dissertation is only a preliminary

evaluation of this two tier memory architecture. The success of this architecture depends

heavily on ability to build a fast and inexpensive crossbar which is competitive with state

of the art buses. Future work on this two-tier memory architecture may include:

10.2. FUTURE WORK 137

• a detailed study of bus designs.

There various techniques that can increase effective bus bandwidth (e.g., pipeline

requests) and speed up response time of a. cache miss (e.g., cache bypass). These

features may increase the bus performance to the level of a. slow crossbar.

• a detailed study of crossbar designs.

The low-latency crossbar chip designed by Srini [Sri88] is a. good candidate for detailed

simulation studies. Advanced VLSI technology allows such complex circuitry to be

mass-produced at low cost.

• mappings of task spaces onto crossbar memory modules.

To achieve the highest potential bandwidth of a. crossbar, the memory spaces used by

the parallel tasks should be mapped onto the memory modules of the crossbar in a

way such that module conflicts are minimized.

• other parallel programming paradigms.

The shared memory architecture of Aquarius II makes it suitable for a. wide variety of

programming applications that exploit medium grain parallelism. This dissertation

discussed the application of Aquarius II for logic programming. Its application for

other parallel programming paradigms should be explored.

The multiprocessor simulation methodology employed in this dissertation has been

invaluable in evaluating the performance of the proposed memory management scheme and

the multiprocessor architecture. The modular design of NuSim makes it possible to simulate

other multiprocessor architectures (i.e., processor, memory, and interconnection network) by

replacing the appropriate modules. For example, the VLSI-PLM processor module may be

replaced with a. commercial microprocessor, or the cache lock state protocol may be replaced

with another cache coherency protocol. The task kernel module for parallel Prolog may be

replaced with parallel execution model for other programming paradigms. On the negative

side, the interpretive nature of the simulator and the limited memory space and processing

power of the host machine have somewhat restricted the full potential of the simulator.

These problems can be reduced with more powerful host machines for simulation.

138 CHAPTER 10. CONCLUSION

10.3 Concluding Remarks

As multiprocessors become more complex, the problem of memory management

for parallel execution is increasingly difficult. It is often beyond the comprehension and

the manageability of the programmer. Porting software to various multiprocessors while

maintaining good memory performance is also a major problem. Therefore, to increase

programmability of parallel architectures, memory management should be done by the

system (and not by the application programmer).

Although shared memory multiprocessors provide an easy to program environment

for a wide variety of applications, this shared space must still be properly managed. A

programming language, such as Prolog, that provides implicit memory management support

frees the programmer from the concern of memory management. This dissertation provides a

possible implementation for such implicit memory management support. By combining two

well known concepts (heap and stack), the resulting solution is more capable of adapting

to the dynamic memory requirements of parallel execution. It is envisioned that other

solutions to memory management problem will also be a hybrid of existing techniques to

deal with the various levels of space requirement during parallel execution.

In the current state of computer technology, uniprocessor systems provide the

lowest cost/performance ratio for most general purpose computing. Since multiprocessor

systems take longer to build, they often do not take advantage of the latest processor

technology. Parallel languages and programming environments need to sufficiently mature

to take full advantage of the multiprocessors, while multiprocessor systems should become

more widely available at much lower costs. As the programmers move away from the

sequential programming mindset, the quantum leap in parallel processing may be realized:

the development of practical and efficient parallel algorithms.

139

Appendix A

NuSim User's Manual

140 APPENDIX A. NUSIM USER'S MANUAL

NAME
nusim - a multiprocessor simulation system for parallel execution of Prolog.

SYNOPSIS
nusim -h
nusim [-option [option_arg~nt] ..•] [PLM-o.ssembly-ftle]

DESCRIPTION
NuSim is a simulator framework for the complete system simulation of a multiprocess<r architecture: from

the instruction set level to the memory architecture level with caches and communication protocols. The
key feature of this simulator framework is flexibility, which allows for extensive instrumentation and con­
tinual updates and changes. The modular design identifies main features of the execution model and the

architectures being simulated as cleanly separated modules with clearly defined interfaces. Thi;,; allows for
easy modifications to the individual modules to suppon new execution models and architectures.

NuSim's ease-of-use features include:

• on-line help messages to quickly show the default settings and briefly explain the commands.
This also allows help messages to be updated mcwe easily than being kept in a separate document

• comfirmation messages to provide feedback that a command has been carried out properly or to

explain the error if the command given is incorrect

• automatic initialization by reading the commands from an initialization file upon starting up.
This feature frees the user from having to repeatedly typing in the same commands upon initiali­
zation, such as which benchmark program to load and whel'e to set the breakpoints.

• a high level debugger, called NuSim Debugger, which can interact with a symbolic debugger
(such as GNU GDB or UI'IU DBX) to)X'Ovide a multi-level level debugging environment

• a graphical interface, called %NuSim, which provides a multiple window environment f<X" view-
ing activities of processors and tasks.

Currently, the simulator suppons the PPP Execution Model, which exploits AND/OR parallelism in Prolog
programs, and a Multi memory architecture, multiple coherent caches on a single bus. The processor
module of NuSim is the VLSI-PLM.

OPTIONS
The following options are available f<X" configuring the multiprocess<r system, the execution model, and
the statistics collection:

-h

-s

-d

-i level

-m trace

-n

-pProcs

·t Tasks

-wWords

-q cycles

·U

-x cycle

pint the help message listing all the options and their current default values (in
parentheses).

toggle switch to simulate idle process<rS (NO)

toggle interactive debug mode (DEBUG)

instrument to .data file O.none !.various 2.inst (1)

memory traces to .mt file; trace: O.no l.data 2.code & data) (0)

collect task (node) statistics (NO)

number of processors to simulate (max=8)

number of tasks allowable (max-64)

hashwindow size (128)

quantum between each .stat dump (5000000)

set unordered output (ORDER)

time where execution is forced to terminate (MAX_INT)

The following are options to configure the cache system:

-Cd Kbytes cache data size (64K)

-Cb Bytes cache block size (16)

-Ca Assoc cache set associativity (4)

-CrPolicy

-Cw Policy

-Cs Integer

-Ci

-CD

cache replacement policy 0) I• LRU, f • FIFO, r • random

cache write policy (b) b =write back, t =write through

seed for random policy (1)

enable instruction address ttacing (off)

enable event stream output (off)

The following options are f<r configuring bus and memory lalency:

-Ba cycles bus arbitration time (1)

-Bb cycles bus broadcast time (2)

-Ma cycles

-Mb cycles

-Ms Kbytes

memory access time (2)

memory burst time (1)

memory callocO size (8K)

The following are the ELPS memory managemem options:

-Ep words ELPS page size (4096)

-Es cycles EI...PS boundary ovcriow check time (2 for software; 0 f<r hardware)

NUSIM DEBUGGER COMMANDS

141

When NuSim running with the debugger option (ON by default) first starts up, commands from a file
nusim.startup is executed, if this file exists. Then the prompt NU.Sim:TOP> will appear (after the initial
'run', subsequent breaks will show the promptNII.Sim:DBG>. At the NuSim debugger prompt, 'h' for the
root help menu. The commands at the root menu are:

h

mmenu

stat

loadf

run

s

c

pint this help message

show the other menus: 1.system 2.display 3.breakpt 4.trace S.dump

show simulator SlatUs

load file into code space

stan simulation nm

step simulation (single instructioo)

continuous simulation

dbx switch control to dbx debuggec

Type 'm <menu I>' will show the other menus with corresponding explanations. The following are some
of the commands used to set up breaktime, lreak points, and trace points:

be pid tid let the break/trace environment, the processor and task pair for which the break/trace
point is to take effect (-1 for all processors/Wks).

bt time

bp a 'bit'

cbc n 'bit'

rma

set the break time (cycle count of the simulated multiprocessor)

set a break/ttace point at an address/label/procedure; the secood argument 'b' or 't' to
select whether to break or trace.

change break/trace point In for break <r trace.

remove break/trace point at addreSS/label/procedure.

142 APPENDIX A. NUSIM USER'S MANUAL

nnall remove all break/1race poin~

sb show break/trace poin~

Tracing fer all procedures/instructions can be done with the following commands:

trace lvf set trace level: O.off l.instruction 2.procedure.

tllv pid tid

tppid

set trace level for a specified pocessa and wk; only one such trace can be set.

set trace IJ'OCessoT number

tttid ~ttrace~nwnber

For many other debugging commands, use the online menu system for help messages.

MULTll..EVEL DEBUGGING
The NuSim debugger can interact with a C symbolic debugger (GNU GDB or Unix DBX) for debugging at
both the VLSI-PLM instruction level and at the C code level (which represen~ the mic~ngine). A
dummy function dbx brealc() is used to transfer control to the C symbolic debugger. To set up multilevel
debugging, start up the C symbolic debugger and set up the breakpoint and alias as follows:

forDBX:

forGDB:

% dbx nusim
(dbx) stop in dbx_brtalc
(dbx) alias menu "call debug_ level()"
(dbx) alias c "coni"
(dbx) rWl [<nusim options> ...] [PLM-assembly-file)

%gdbnusim
(gdb) brtalc dbx _ brtalc
(gdb) define menu

prilll debug_ lew/()
end

(gdb) rWl [<nusim options> ...) [PLM-assembly-file]

After NuSim is invoked, the NuSim:TOP> prompt will appear. Aftc:t the initial command 'nm' to NuSim,
subsequent breaks will show either the NuSim:DBG> pompt or the (gdb) (or (dbx)) prompt, depending on
whether the breakpoint was set in the NuSim debugger or the C symbolic debugger. If the NuSim:DBG>
prompt appears at the breakpoint, typing 'dbx' will get to the C debugger prompt, and typing 'c' will get
back to the NuSim debugger before continuing execution. If the C debugger prompt is shown at the break­
point, typing 'menu' will get to the NuSim debugger level, and multilevel debugging provides a simple
way to observe data structures at the desired level of abstraction (a Prolog structure or a memory location)
and setting breakpoin~ at the desired granularity.

UMITATIONS
The size of memory that can be allocated for simulating the target multiprocessor memory is dependent on
the swap space available on the host which executes the simulator.

SEE ALSO
xnusim(l)

AUTHORS
Tam M Nguyen (simulation framework. debugger, and pocessa module),
Chien Chen (PPP ~kernel), and
Mike Carlton (cache and memory module)­
University of California at Berkeley.

143

Bibliography

[ABY*87] S. Abe, T. Bandoh, S. Yamaguchi, K. Kurosawa, and K. Kiriyama. High

Performance Integrated Prolog Processor IPP. In Proceedings of 14th Interna­

tional Conference on Computer Architecture, 1987.

[ACHS88] K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin. Garbage Collection for

Prolog Based on WAM. Communications of the ACM, 31(6), June 1988.

[AP84] O.P. Agrawal and A.V. Pohm. Cache Memory Systems for Multiprocessor Ar­

chitectures. In Proceedings of the 11th International Symposium on Computer

Architecture, Ann Arbor, MI, June 1984.

[Arc88] J. K. Archibald. A Cache Coherence Approach for Large Multiprocessor Sys­

tems. In 1988 ACM International Conference on Supercomputing, ACM Press,

Saint-Malo, France, July 1988.

[BBB*89] H. Benker, J.M. Beacco, S. Bescos, M. Dorochevsky, Th. Jeffre, A. Pohlmann,

J. Noye, B. Poterie, A. Sexton, J.C. Syre, 0. Thibault, and G. Waltzlawik.

KCM: A Knowledge Crunching Machine. In 16th International Symposium on

Computer Architecture, pages 186-194, May 1989.

[BCMD87a] W. Bush, G. Cheng, P. McGeer, and A. Despain. Experience with Prolog as a

Hardware Specification Language. In Proceedings of the 1981 IEEE Symposium

on Logic Programming, pages 490-498, San Francisco, September 1987.

[BCMD87b] W.R. Bush, G. Cheng, P.C. McGeer, and A.M. Despain. An Advanced Sili­

con Compiler in Prolog. In Proceedings of the Intl. Conference on Computer

Design, pages 27- 31, Oct. 1987.

144

[BD86]

BIBLIOGRAPHY

P. Bitar and A. Despain. Multiprocessor Cache Synchronization Issues, Inno­

vations, Evolution. In Proceedings of the 19th Intl. Symposium on Computer

Architecture, pages 424-433, Tokyo, Japan, June 1986.

[BdKH*88] U. Baron, J .C. de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, and J­

C Syre. A Parallel ECRC Prolog System PEPSys: An overview and evaluation

results. In Proceedings of the International Conference on Fifth Generation

Computer Systems, Tokyo, Japan, November 1988.

[BDL*88] R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, and R. Stevens. Scheduling

for OR-Parallelism: An Argonne Perspective. In 5th Int'l Conference and

Symposium on Logic Programming, Seattle, Washington, August 1988.

[Bel85]

[BG87]

[BGW89]

[Bit89a]

[Bit89b]

C. G. Bell. Multis: a New Class of Multiprocessor Computers. Science,

228:462--467, April16, 1985.

J. Beer and W. Giloi. POPE- a Parallel-Operating Prolog Engine. 1987.

D.L. Black, A. Gupta, and W-D Weber. Competitive Management of Dis­

tributed Shared Memory. In Spring COMPCON 89, IEEE Computer Society

Press, February 1989.

P. Bitar. Automatic Program Annotation with SDDA. March 1989. Aquarius

Parallel Model group discussion, UC Berkeley.

P. Bitar. A Critique of Trace-Driven Simulation for Shared-Memory Multi­

processors. In Proceedings of the Int'l Conference on Computer Architecture

Workshop on Coherent Cache and Interconnect Structure for Multiprocessors,

Eilat, Israel, May 1989.

[BJCD87] M. Bruynooghe, G. Jenssens, A. Callebaut, and B. Demoen. Abstract Interpre­

tation: Towards the Global Optimization of Prolog Programs. In Proceedings

of the 1981 Symposium on Logic Programming, MIT Press, San Francisco,

California, September 1987.

[BM82] C.G. Bell and J.E. McNamara. The PDP-8 Family. In D.P. Siewiorek, C.G.

Bell, and A. Newell, editors, Computer Structures: Principles and Examples,

pages 767-775, McGraw-Hill, 1982.

•

BIBLIOGRAPHY 145

[Bor84]

[BR86]

[Bru82]

[BSY88]

[Car89]

[CC88]

[CD90]

[CG86]

[CGB89]

P. Borgwardt. Parallel Prolog Using Stack Segments on Shared-Memory Mul­

tiprocessors. In Proceedings of the 1984 International Symposium on Logic

Programming, Atlantic City, NJ, Feb. 1984.

P. Borgwardt and D. Rea. Distributed Semi-intelligent Backtracking for a

Stack-based AND-parallel Prolog. In IEEE 1986 Symposium on Logic Pro­

gramming, pages 211-222, Salt Lake City, Utah, September 1986.

M. Bruynooghe. The Memory Management ofProloglmplementations. In K.L.

Clark and S.A. Tarnlund, editors, Logic Programming, pages 83-98, Academic

Press, New York, NY, 1982.

R. Biswas, S.C. Su, and D. Yun. A Scalable Abstract Machine Model to

Support Limited-OR (LOR)/Restricted-AND Parallelism (RAP) in Logic Pro­

grams. In Proreedings of the 5th International Conference and Symposium on

Logic Programming, Seattle, August 1988.

M. Carlton. Cache Coherency for Multiple-Bus Multiprocessor architectures.

March 1989. Technical Progress Report (November 1988 - March 1989),

DARPA Contract No. N00014-88-K-0579.

H. Coelho and J.C. Cotta. Prolog by Example: How To Learn, Teach and Use

It. Springer-Verlag, 1988.

M. Carlton and A. Despain. Cache Coherency for Multi-Multis. submitted to

Computer Magazine Nov 1989, 1990.

K. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. ACM

Transactions on Programming Languages and Systems, 8(1), January 1986.

D.R. Cheriton, H.A. Goosen, and P.D. Boyle. Multi-Level Shared Caching

Techniques for Scalability in VMP-MC. In Proceedings of the 16th Annual

International Symposium on Computer Architecture, Jerusalem, Israel, May

1989.

[CGS*85] W. Crowther, J. Goodhue, E. Starr, R. Thomas, and T. Blackadar. Perfor­

mance Measurements on a 128-Node Butterfly Parallel Processor. In Pro-

146

(CH83]

(CH86]

[Cha.85]

(CHN88]

(Cit88]

[Clo85]

[Clo87]

(CM87]

[Con83]

BIBLIOGRAPHY

ceedings of the 1985 International Conference on Parallel Processing, August

1985.

A. Ciepielewski and S. Haridi. A Formal Model for OR-Parallel Execution of

Logic Programs. In Proc. Information Processing (IFIP) 83, North-Holland,

1983.

Andrzej Ciepielewski and Bogumil Hausman. Performance Evaluation of a

Storage Model for OR-Parallel Execution of Logic Programs. In Proceedings

of the 3rd IEEE Symposium on Logic Programming, pages 246-257, Salt Lake

City, Utah, 1986.

J .H. Chang. High Performance Execution of Prolog Programs Based on a Static

Data Dependency Analysis. PhD thesis, University of California at Berkeley,

October 1985. CS Division Report No. UCB/CSD 86/263.

M. Carlton, B. Holmer, and T. Nguyen. MultiSim: A Complete Multiprocessor

Cache Simulation System. May 1988. CS258 Class Report, CS Division,

University of California at Berkeley.

W. Citrin. Parallel Unification Scheduling in Prolog. PhD thesis, CS Division,

University of California at Berkeley, April1988. Tech Report No. UCB/CSD

88/415.

W.F. Clocksin. Design and Simulation of a Sequential Prolog Machine. New

Generation Computing, 3:101-103, 1985.

W.F. Clocksin. Logic Programming and Digital Circuit Analysis. The Journal

of Logic Programming, 4:59-82, March 1987.

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag,

New York, 3rd edition, 1987.

J.S. Conery. The AND/OR Process Model for Parallel Interpretation of Logic

Programs. PhD thesis, University of California, Irvine, June 1983. Technical

Report 204.

BIBLIOGRAPHY 147

[Con87]

[Cra85]

[CVR86]

[CVR88]

[Dah88]

[Deg84]

[DeG87]

[Dem82]

[DL87]

[DL087]

[Dob87a]

J.S. Conery. Binding Environments for Parallel Logic Programs in Nonshared

Memory Multiprocessors. In Proceedings of the 1987 IEEE Symposium on

Logic Programming, pages 457-467, San Francisco, September 1987.

J. Crammond. A Comparative Study of Unification Algorithms for OR-Parallel

Execution of Logic Languages. IEEE Transactions on computers, C-34:911-

917, October 1985.

W. Citrin and P. Van Roy. Compiling Prolog for the Berkeley PLM. In

Proceedings of the 19th Hawaii International Conference on System Sciences,

Honolulu, Hawaii, 1986.

Mike Carlton and Peter Van Roy. Distributed Prolog System with And Par­

allelism. IEEE Software, 5(1):43-51, January 1988.

V. Dahl. Representing Linguistic Knowledge Through Logic Programming.

In Proceedings of the 5th International Conference and Symposium on Logic

Programming, MIT Press, Seattle, Washington, 1988.

D. Degroot. Restricted AND-Parallelism. In International Conference on Fifth

Generation Computer Systems, November 1984.

D. DeGroot. Restricted And-Parallelism and Side-Effects. In Proceedings of the

1987 Symposium on Logic Programming, pages 80-89, San Francisco, August

1987.

J. Deminent. Experience with Multiprocessor Algorithms. IEEE Transactions

on Computers, C-31{4), April1982.

T. Disz and E. Lusk. A Graphical Tool for Observing the Behavior of Parallel

Logic Programs. In Proceedings of the 1987 Symposium on Logic Programming,

pages 46-53, San Francisco, August 1987.

T. Disz, E. Lusk, and R. Overbeek. Experiments with OR-Parallel Logic

Programs. In Proceedings of the Fourth International Conference on Logic

Programming, Melbourne, Australia, May 1987.

T. Dobry. Xenologic's X-1. In Proceedings of Spring Compcon, San Francisco,

CA, Feb. 1987.

148

[Dob87b]

[Doc88]

[DPD84]

[DS88]

[EK87]

[Enc85]

[End87]

[Fag87]

[FC88]

[FD87]

[FM83]

BIBLIOGRAPHY

Tep Dobry. A High Performance Architecture for Prolog. PhD thesis, Univer­

sity of California, Berkeley, May 1987. Technical Report UCB/CSD 87/352.

T.W.G. Docker. SAME- A Structured Analysis Tool and its Implementation

in Prolog. In Proceedings of the 5th International Conference and Symposium

on Logic Programming, MIT Press, Seattle, Washington, 1988.

T. Dobry, Y. Patt, and A.M. Despain. Design Decisions Influencing the Mi­

croa.rchitecture For A Prolog Machine. In Proceedings of the MICRO 11, Oc­

tober 1984.

A. Despain and V. Srini. Technical Progress Report: May 1988 - October

1988. Technical Report, Computer Science Division, University of California,

Berkeley, CA 94720, October 1988. DARPA Contract No. N00014-88-K-0579.

S.J. Eggers and R.H. Katz. A Characterization of Sharing in Parallel Programs

and its Applicability to Coherency Protocol Evaluation. Technical Report, CS

Division, University of California, Berkeley, December 1987.

Encore Computer Corporation. Multimax Technical Summary. May 1985.

Endot, Inc. N-2 User Manuals. 1987.

B.S. Fagin. A Parallel Execution Model for Prolog. PhD thesis, University of

California at Berkeley, November 1987. Technical Report UCB/CSD 87/380.

R.M. Fujimoto and W.B. Campbell. Efficient Instruction Level Simulation of

Computers. Transactions of the Society for Computer Simulation, 5(2):109-

124, 1988.

B.S. Fagin and A.M. Despain. Performance Studies of a Parallel Prolog Ar­

chitecture. In 14th International Symposium on Computer Architecture, June

1987.

E.A. Feigenbaum and P. McCorduck. The Fifth Generation: Artificial Intelli­

gence and Japan's Computer Challenge to the World. Addison-Wesley, 1983.

BIBLIOGRAPHY 149

[FPSD85] B.S. Fagin, Y.N. Patt, V.P. Srini, and A.M. Despain. Compiling Prolog Into

Microcode: A Case Study Using the NCR/32-000. In Proceedings of the MI­

CRO 18, Asilomar, CA, December 1985.

[Fuj83a]

[Fuj83b]

[Gea83]

[Geh87]

[GF 85]

(GMT89]

[Goo83]

[GW88]

[HB88]

R.M. Fujimoto. SIMON: A Simulator of Multicomputer Networks. Technical

Report UCB/CSD 83/140, University of California at Berkeley, September

1983.

R.M. Fujimoto. VLSI Communication Components for Multicomputer Net­

works. PhD thesis, University of California at Berkeley, September 1983.

A. Gottlieb and et. al. The NYU Ultra Computer. IEEE Transactions on

Computers, C-32, No. 2:175-189, February 1983.

E.F. Gehringer. Parallel Processing: The Cm* Experience. Digital Press, 1987.

G.F. Pfister, et al. The IBM Research Parallel Processor (RP3): Introduction

and Architecture. In Proceedings of the 1985 International Conference on

Parallel Processing, pages 764-771, 1985.

A. Goto, A. Matsumoto, and E. Tick. Design and Performance of a Coherent

Cache for Parallel Logic Programming Architectures. In Proceedings of the

16th Annual International Symposium on Computer Architecture, Israel, June

1989.

J. Goodman. Using Cache Memories to Reduce Processor-Memory Traffic. In

Proceedings of the 1Oth International Symposium on Computer Architecture,

Stockholm, Sweden, June 1983.

J. R. Goodman and P. Woest. The Wisconsin Multicube: A New Large-Scale

Cache-Coherent Multiprocessor. In Proceedings of the 15th Annual Interna­

tional Symposium on Computer Architecture, Honolulu, Hawaii, June 1988.

S. Haridi and P. Brand. ANDORRA Prolog- An Integration of Prolog and

Committed Choice Languages. In Proceedings of the International Confer­

ence on Fifth Generation Computer Systems, pages 745-754, Tokyo, Japan,

November 1988.

150

[HCH87]

BIBLIOGRAPHY

B. Hausman, A. Ciepielewski, and S. Haridi. Or-Parallel Prolog Made Efficient

on Shared Memory. In Proceedings of the 1981 IEEE Symposium on Logic

Progromming, pages 69-79, San Francisco, September 1987.

[HEL*86] M. Hill, S. Eggers, J. Larus, G. Taylor, G. Adams, B.K. Bose, G. gibson, P.

[Her86]

[HHS88]

[Hil86]

[Hil87]

Hansen, J. Keller, S. Kong, C. Lee, D. Lee, J. Pendleton, S. Ritchie, D. Wood,

B. Zorn, P. Hilfinger, D. Hodges, R. Katz, J. Ousterhout, and D. Patterson.

Design Decisions in SPUR. IEEE Computer, :1- 22, November 1986.

M. V. Hermenegildo. An Abstroct Machine Based Execution Model for Com­

puter Architecture Design and Efficient Implementation of Logic Progroms in

Parallel. PhD thesis, University of Texas at Austin, August 1986. Department

of Computer Sciences TR-86-20.

L. Hirschmann, W. C. Hopkins, and R. C. Smith. OR-Parallel Speed-Up

in Natural Language Processing: A Case Study. In Proceedings of the 5th

International Conference and Symposium on Logic Programming, MIT Press,

Seattle, Washington, 1988.

W.D. Hillis. The Connection Machine. MIT Press, Cambridge, Massachus­

settes, 1986.

M. Hill. Aspects of Cache Memory and Instruction Buffer Performance. PhD

thesis, Ph. D. Thesis, University of California, Nov. 1987. CS Division Report

No. UCB/CSD 87/381.

[HMSe86] J.P. Hayes, T. Mudge, Q.F. Stout, and et. al. A Microprocessor-based Hyper­

cube Supercomputer. IEEE Micro, 6(5):6-17, October 1986.

[Hol88] Bruce Holmer. A Detailed Description of the VLSI-PLM Instruction Set. July

27, 1988. UC Berkeley CS Division Internal Report.

[HSC*90] B.K. Holmer, B. Sano, M. Carlton, P. Van Roy, R. Haygood, W.R. Bush,

A.M. Despain, J. Pendleton, and T. Dobry. Fast Prolog with an Extended

General Purpose Architecture. In Proceedings of the 11th Intl. Symposium on

Computer Architecture, Seattle, Washington, May 1990.

BIBLIOGRAPHY 151

[IH88]

[Int86]

[JMP87]

[Jon86]

[Kal87]

[KC87]

K. Iwanuma and M. Harao. Knowledge Representation and Inference Based

on First-Order Modal Logic. In Proceedings of the International Conference

on Fifth Generation Computer Systems, Tokyo, Japan, November 1988.

Intel Scientific Computers. Intel iPSC System Overview. 1986. Order Number

310610-001.

J.Gee, S. Melvin, and Y.N. Patt. Advantages of Implementing Prolog by

Microprogramming a Host General Purpose Computer. In Proceedings of the

4th International Conference on Logic Programming, Melbourne, Australia,

May, 1987.

D.W. Jones. Concurrent Simulation: An Alternative to Distributed Simula­

tion. In Proceedings of the 1986 Winter Simulation Conference, pages 417-423,

Washington D.C., December 1986.

L. V. Kale. The REDUCE-OR Process Model for Parallel Evaluation of Logic

Programs. In Proceedings of the Fourth International Conference on Logic

Programming, Melbourne, Australia, May 1987.

Y. Kimura and T. Chikayama. An Abstract KLl Machine and Its Instruction

Set. In Proceedings of the 1981 Symposium on Logic Programming, August

1987.

[KEW*85] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, and R.G. Sheldon. Imple­

menting a Cache Consistency Protocol. In Proceedings of the 12th International

Symposium on Computer Architecture, pages 276-283, Boston, June 1985.

[KRS88) L.V. Kale, B. Ramkumar, and W. Shu. A Memory Organization Independent

Binding Environment for AND and OR Parallel Execution of Logic Programs.

In Proceedings of the 5th International Conference and Symposium on Logic

Programming, Seattle, August 1988.

[KTW*86] Y. Kaneda, N. Tamura, K. Wada, H. Matsuda, S. Kuo, and S. Maekawa.

Sequential Prolog Machine PEK. New Generation Computing, :51-86, April

1986.

152 BIBLIOGRAPHY

[Kun82] H.T. Kung. Why Systolic Architectures? IEEE Computer, 15(1), January

1982.

[LBD*88] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D.H.D.

[Lin84]

[Lin88]

[Llo87]

[LM86]

[LP84]

[Mea83]

[Mel82]

[MU86]

Warren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A.

Ciepielewski, and B. Hausman. The Aurora Or-Parallel Prolog System. In Pro­

ceedings of the Int 'l Conference on 5th Generation Computer Systems, Tokyo,

Japan, November 1988.

G. Lindstrom. OR-Parallelism on Applicative Architectures. In Proc. 2nd Int'l

Conf. on Logic Programming, pages 159-170, Uppsala, July 1984.

Y.-J. Lin. A Parallel Implementation of Logic Programs. PhD thesis, Univer­

sity of Texas, Austin, August 1988. Technical Report Al88-84.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,

1987.

P.P. Li and A.J. Martin. The Sync Model: A Parallel Execution Method for

Logic Programming. In IEEE 1986 Symposium on Logic Programming, Salt

Lake City, Utah, September 1986.

G. Lindstrom and P. Panangden. Stream-Based Execution of Logic Program­

ming. In Proceedings of the 1984 International Symposium on Logic Program­

ming, pages 168-176, Atlantic City, N J, February 1984.

J .R. McGraw and et. al. SISAL: Streams and Iteration in a Single-Assignment

Language. Technical Report, Lawrence Livermore National Laboratory, 1983.

C. S. Mellish. An Alternative to Structure Sharing in the Implementation of a

prolog Interpreter. In K.L. Clark and S.A. Tarnlund, editors, Logic Program­

ming, pages 99-106, Academic Press, New York, NY, 1982.

H. Mannila and E. Ukkonen. Timestamped Term Representation for Imple­

menting Prolog. In Proceedings of the 1986 Symposium on Logic Programming,

IEEE Computer Society, September 1986.

BIBLIOGRAPHY 153

[MudS9]

[Ngu90]

[NNS7]

[NSSS]

[PanS9]

[PBWS5]

[PMS6]

[PSS7]

[QSPS5]

[ReiS7]

[ReiSS]

S. Mudambi. Performance of Aurora on a Switch-Based Multiprocessor. In

E.L. Lusk and R.A. Overbeek, editors, Logic Programming: Proceedings of the

North American Conference, MIT Press, 19S9.

T .M. Nguyen. Complete Code Listing of the NuSim Multiprocessor Simulator.

Technical Report, CS Division, University of California, Berkeley, May 1990.

(in preparation).

H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential

Inference Machine: PSI-II. In Proceedings of the 1987 Symposium on Logic

Progmmming, San Francisco, California, August 19S7.

T.M. Nguyen and V.P. Srini. A Two-Tier Memory Architecture for High

Performance Multiprocessor Systems. In 1988 ACM International Conference

on Supercomputing, ACM Press, Saint-Malo, France, July 19SS.

S.C. Pang. xNuSim: Graphical Interface for a Multiprocessor Simulators. Tech­

nical Report UCB CSD S9 /532, CS Division, University of California, Berkeley,

19S9.

E. Pittomvils, M. Bruynooghe, and Y.D. Willems. Towards a Real-Time

Garbage Collector for Prolog. In Proceedings of the 1985 Symposium on Logic

Progmmming, pages 185-19S, Boston, MA, July 19S5.

R. Perron and C. Mundie. The Architecture of the Alliant FX/S Computer.

In A.G. Bell, editor, IEEE Spring Compcon 86, March 19S6.

F.C.N. Pereira and S.M. Shieber. Prolog and Natural Language Analysis.

CSLI/SRI International, 19S7. CSLI Lecture Notes Number 10.

J.S. Quarterman, A. Silberschatz, and J.L. Peterson. 4.2BSD and 4.3BSD as

Examples of the UNIX System. A CM Computing SuMJey, 17(4), Dec 19S5.

P.B. Reintjes. AUNT: A Universal Netlist Translator. In Proceedings of the

1987 IEEE Symposium on Logic Progmmming, September 1987.

P. B. Reintjes. A VLSI Design Environment in Prolog. In Proceedings of the 5th

International Conference and Symposium on Logic Programming, pages 70-S1,

Seattle, Washington, 19S8.

154

[RF87]

[SA83]

[Sar88]

[Sat80]

[SBN82]

[Scr74]

[Sha86]

[Shi88]

[Sin88]

[Sin90]

[SKR88]

[Smi82]

BIBLIOGRAPHY

D.A. Reed and R.M. Fujimoto. Multicomputer Networks: Message-Based Par­

allel Processing. The MIT Press, Cambridge, Massachusetts, 1987.

V.P. Srini and J.F. Asenjo. Analysis of Cray-1S Architecture. In Proceedings of

the 10th International Symposium on Computer Architecture, pages 194-206,

Stockholm, Sweden, June 1983.

R.G. Sargent. A Tutorial on Validation and Verification of Simulation Models.

In Proceedings of the 1988 Winter Simulation Conference, December 1988.

M. Satyanarayanan. Multiprocessors- A Comparative Study. Prentice-Hall,

Inc., 1980.

D.P. Siewiorek, C.G. Bell, and A. Newell. Personal Computing Systems. In

D.P. Siewiorek, C.G. Bell, and A. Newell, editors, Computer Structures: Prin-.

ciples and Examples, pages 547-548, McGraw-Hill, 1982.

T.J. Scriber. Simulation using GPSS. John Wiley and Sons, New York, 1974.

Ehud Shapiro. Concurrent Prolog: A Progress Report. IEEE Computer,

19(8):44-58, August 1986.

T. Shintani. A Fast Prolog-Based Prodcution System KORE/IE. In Proceed­

ings of the 5th International Conference and Symposium on Logic Program­

ming, MIT Press, Seattle, Washington, 1988.

Ashok Singhal. PUP: An Architecture to Exploit Parallel Unification in Prolog.

Master's thesis, University of California at Berkeley, May 1988.

A. Singhal. Exploiting Fine Grain Parallelism in Prolog. PhD thesis, Univer­

sity of California, (expected June 1990).

W. Shu, L.V. Kale, and B. Ramkumar. Implementation and Performance of

Parallel Prolog Interpreter. Technical Report Report No. UIUCDCS-R-88-

1480, CS Dept., University of Illinois at Urbana-Champaign, December 1988.

A.J. Smith. Cache Memories. Computing Surveys, 14(3):473-530, September

1982.

BIBLIOGRAPHY 155

[Sri88]

[Sri89]

(SS86]

V.P. Srini. A Low-Latency Crossbar Chip for Multiprocessors. Patent Appli­

cation, University of California, Jan. 1988.

V.P. Srini. Crossbar-Multi-Processor Architecture. In Proceedings of the Int'l

Conference on Computer Architecture Workshop on Coherent Cache and In­

terconnect Structure for Multiprocessors, Eilat, Israel, May 1989.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Tech­

niques. MIT Press, 1986.

(STN*88] V.P. Srini, J. Tam, T. Nguyen, B. Holmer, Y. Patt, and A. Despain. Design

and Implementation of a CMOS Chip for Prolog. Technical Report UCB/CSD

88/412, CS Division, UC Berkeley, March 1988.

(SW87]

[Sze89]

(TD87]

(TGF88]

[TH88]

[Tic87]

[TL87]

K. Shen and D.H.D. Warren. A Simulation Study of the Argonne Model for Or­

Parallel Execution of Prolog. In Proc. 1987 Symposium on Logic Programming,

August 1987.

P. Szeredi. Performance Analysis of the Aurora Or-Parallel Prolog System. In

E.L. Lusk and R.A. Overbeek, editors, Logic Programming: Proceedings of the

North American Conference, MIT Press, 1989.

H. Touati and A. Despain. An Empirical Study of the Warren Abstract Ma­

chine. In Proceedings of the 1987 IEEE Symposium on Logic Programming,

pages 114-124, San Francisco, September 1987.

S. Thakkar, P. Gifford, and G. Fielland. The Balance Multiprocessor System.

IEEE Micro, 8(1), Feb. 1988.

H. Touati and T. Hama. A Light-Weight Prolog Garbage Collector. In Inter­

national Conference on Fifth Generation Computer Systems 1988 (FGCS'88},

Tokyo, Japan, 1988.

E. Tick. Studies In Prolog Architectures. PhD thesis, Stanford University,

June 1987. Technical Report No. CSL-TR-87-329.

P. Tinker and G. Lindstrom. A Performance-Oriented Design for OR-Parallel

Logic Programming. In Proceedings of the Fourth International Conference on

Logic Programming, Melbourne, Australia, May 1987.

156

[UedS5]

[VRS4]

[VR90]

[WalS5]

(WarS3]

[War84]

[War87a]

[WarS7b]

(WeiSS]

BIBLIOGRAPHY

Kazunori Ueda. Guarded Horn Clauses. Technical Report Technical Report

TR-103, !COT, June 19S5.

P. Van Roy. A Prolog Compiler for the PLM. Master's thesis, University of

California, Berkeley, CA, August 19S4.

P. Van Roy. The Benefits of Global Flow Analysis for an Optimizing Prolog

Compiler. submitted to North American Conference on Logic Programming,

1990.

S. Wallach. The Convex C-1 64-bit Supercomputer. In Digest of Papers,

Spring COMPCON 85, pages 122-126, San Francisco, Feb. 19S5.

D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report, SRI

International, Menlo Park, CA, 19S3.

D.S. Warren. Efficient Prolog Memory Management for Flexible Control

Strategies. In Proceedings of the 1984 International Symposium on Logic Pro­

gramming, pages 19S-202, Atlantic City, NJ, February 19S4.

D.H.D. Warren. Or-Parallel Execution Models of Prolog. In The 1987 Inter­

national Joint Conference on Theory and Practice of Software Development

(TAPSOFT '87 Proceedings II), pages 243-259, Springer-Verlag, Pisa, Italy,

March 19S7.

D.H.D. Warren. The SRI Model for Or-Parallel Execution of Prolog - Ab­

stract Design and Implementation Issues. In Proceedings of the 1987 IEEE

Symposium on Logic Programming, pages 92-102, San Francisco, September

19S7.

Allen Jia-Juin Wei. DUES (Display Utilities and Environments for Simula­

tion). Master's thesis, Computer Science Division, University of California at

Berkeley, 19SS. Tech Report UCB/CSD SS/419.

[WHDSS] R. Warren, M. Hermenegildo, and S.K. Debray. On the Practicality of Global

Flow Analysis of Logic Programs. In Proceedings of the Fifth International

Conference and Symposium on Logic Programming, MIT Press, Seattle, Wash­

ington, August 19SS.

BIBLIOGRAPHY 157

[Whi85]

[Wil87a]

[Wil87b]

C. Whitby-Strevens. The Transputer. In Proceedings of the 12th International

Symposium on Computer Architecture, June 1985.

A.W. Wilson. Hierarchical Cache f Bus Architecture for Shared Memory Mul­

tiprocessors. In Proceedings of the 1-4th International Symposium on Computer

Architecture, pages 244-252, June 1987.

A.W. Wilson. Parallelization of an Event Driven Simulator for Computer

Systems Simulation. Simulation, 49(2):72-78, August 1987.

[WMSW87] A. Walker, M. McCord, J.F. Sara, and W.G. Wilson. Knowledge Systems and

Prolog. Addison-Wesley, 1987.

[WWS*89] P. Woodbury, A. Wilson, B. Shein, I. Gertner, P.Y. Chen, J. Barttlet, and

Z. Aral. Shared Memory Multiprocessors: The Right Approach to Parallel

Processing. In Spring COMPCON 89, IEEE Computer Society Press, February

1989.

[Yok84]

[Zor89]

M. Yokota. A Personal Sequential Inference Machine (PSI). Proceedings of the

International Workshop on Highlevel Computer Architecture-84, May 1984.

B.G. Zorn. Comparative Performance Evaluation of Garbage Collection Al­

gorithms. PhD thesis, University of California, December 1989. CS Division

Report No. UCB/CSD 89/544.

